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I

Degenerate Matter (_d.I). ArC%_t_)

The study of such topics as white dwarfs and neutron

stars requires a knowledge of the physics of ultradense

matter. With this in mind we discuss the quantum

statistics,* wi%h emphasis upon the degenerate gas.

Fundamentals of Quantum Sta£istics

Consider a subsystem of a larger, macroscopic system,

which, while small, is still macroscopic itself. It can

be shown generally that the number of levels in a given

finite interval of the energy spectrum of a macroscopic

* The derivation of the quantum statistical distributions

given here follows the methods of Landau and Lifshitz

(1958). A similar approach is that of Pauli (1926),

which also may be found in Tolman (1938) and

Chandrasekhar (1939). For a more detailed account

of theoretical aspects, the above references are

suggested. Besides this approach (which uses the

"grand canonical ensemble") there are the more

common "microcanonical" approaches of i) finding the

most probable distribution (Tolman, 1938) and 2)

finding the mean distribution by the method of Darwin

and Fowler (Sommerfeld, 1956).



body increases exponentially with the number of particles

in the body,* hence the level spacing is an extraordinarily

small number. This property will prove useful. Because no

ph_,sical system is ever rigorously closed, some interactions

will exist with the'Dutside." Even interactions which are

so small that they have no other effect on the system will

still appear large compared with the vanishingly small

spacing between energy levels. Consequently, we consider

our subsystem for times short enough that it is "quasi-

closed," i.e., so that interactions with external systems

have a minute effect. It is important to note that these

interactions are the means by which the component subsystems

of a larger body are brought to equilibrium with each other.

A quantum mechanical description based on incomplete

information about a system is carried out by means of the

"density matrix"**. The knowledge of the density matrix

permits us to calculate the mean value of any variable

of the system, and also the probabilities of the different

values of these variables. We shall show how the density

matrix can be introduced directly in the energy repre-

sentation required for statistical applications.

* Landau and Lifshitz (1958) p. 28.

**Tolman (1938) has an excellent discussion of the density

matrix inquantum statistics.
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We consider a subsystem and define its "stationary

states" as the states resulting if its interaction with

its neighbors is ignored. Let _n(q) be the normalized

wave functions (time-independent) of these states, where

q stands for the coordinates of the subsystem and the

index n for the-set of all quantum numbers labelling the

stationary states. E n is the energy of these states.

Assume that at some given time the subsystem is in some

state completely described by a wave function 7.

Expanding in terms of the complete set,

4' = _, c n 7n _i)

n

The mean value of an arbitrary quantity f is then

where

 :ZZo*n Cm fnm
n m

and

to f.

denotes the quantum mechanical operator corresponding



The transition from a complete to an incomplete quantum

mechanical description of a subsystem can, in a certain

sense, be regarded as _veraging over its different

states. As a result of such averaging the products

c c will give rise to quantities which we shall denote
n m

by Wmn , which form a double sequence (both indices vary),

and which cannot be expressed as products of quantities

forming a single sequence (<c n Cm>_Wmn). The mean is
av

then

_ = _ Wren fnm

m n

The set of quantities w forms the density matrix in
mn

the energy representation. If we consider the w as
nm

A

matrix elements of some operator w, then the sum in

_4) will be a diagonal element of the matrix of the

operator product, wf, and the mean value

= _ (Wf)nn = Tr(wf) _5)

n

will be given by the trace (sum of the diagonal elements)

of this operator. As the trace of an operator is known to

be independent of the choice of the system of functions



in terms of which the elements are defined, this form of

representation allows us to calculate with an arbitrary

(subject to boundary conditions), complete, orthogonal,

normalized set of wave functions. *

If Y = _ Cn(t) 7n(q)
n

we have

_C n

n

_ __ _ .... . _

^ _ B_(q,t) = o
H _(q,t) + _ _t

so that,

_C

n m

or, on using the orthonormality of the ¥n(q)'s,

where

_C
n i

_t - A H Crun m

Hnm = I T * H Ymdqn



&

Now, going to the average of macroscopic states T which .

are possible from our limited knowledge,

W = C C
nm m n

where the double bar explicitly denotes both quantum

mechanical and statisitical averaging. Then,

_w
nm i

_t " _ _ <Hnk Wkm - Wnk _

k

or, in operator language,

By the definition of statistical equilibrium, the

statistical distributions of the subsystems must be

stationary, so w and H must commute. Hence the

matrices of all the subsystems w must be diagonal,
nm

and in this case

f=_w f
, n nn

n

which involves only the diagonal elements of the f

matrix, nm
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The probability that a system is in the n th state

is given by w . Now,
nn

= w > o "l'&6)w
n nn -li- _ -

always, and the normalization condition is now

Tr(w) = I wn = 1 _7)

n

(corresponding to I I Cn_ = i).

n

We note that the averages _ defined in _4) have a

double nature. First, they represent an average over the

essential uncertainty of a quantum mechanical descrlption,

and second, they represent an average over the possible

T's permitted by our incomplete knowledge of the system.

Nevertheless, these two averaging processes are not

separable, but occur simultaneously. In quantum statistics

the density matrix plays the role that the distribution

function does in classical statistics.

We now use the mathematical idealization of a closed

system, for which we can construct a simple distribution

function that suitably describes its statistical prop-

erties. This is called the "quantum microcanonical

distribution." Bearing in mind the nearly continous



character of the energy spectra of macroscopic bodies, we

say that a number of quantum states dF "belong" to an

infinitesimal energy interval dE.

Regarding the closed system as composed of subsystems

whose interactions we neglect, the number dF for the

system is

dr = dr
a a

the permitted product of the number dF for each sub-
a

system "a" (such that the sum of the energies of the

subsystems E lies in the proper range around the energy

E(o ) for the whole system). The probability that the

system is in one of the states dF is

dw = const. 6(E-E(o)) n'a dFa _9)

Now our original problem of finding the distribution

function for a subsystem may be attacked by applying the

microcanonical ensemble to the whole system. For convenience

we now call the subsystem of interest the "body" while the

rest of the whole system is called the "medium." For this

two-part system of body and medium, _9) becomes

dw = const. 6(E+E'-E(o_F dF" _lO)



i

where the primes refer to the medium and E(o ) is the

energy for the whole system (that is, E(o) = E+E').

Let AF" be the statistical weight of the macroscopic

state of the medium and AE" denote the range of values

for the energy of the medium corresponding to the range

of quantum states dF'.

We wish to find the probability w that the whole
n

system should be in a state in which the body is in some

particular quantum state (with energy En), i.e., in a

state described in a microscopic manner. To find this we

replace dF by unity, put E = En, and integrate _0)

over dF".

Wn = c°nst'_6(En+E'-E(o))dF'J  .ii)

Let F'(E') be the total number of quantum states of the

medium with energy less than or equal to E'. Since the

integrand depends on E" alone (En, E(o ) are parameters),

we transform to integration over E" by using

dF" -- dF'(E') dE"
 12),

Now, the entropy of the medium may be defined by*

S,

k - log at"  13)

* Landau and Lifshitz (1958), p. 23.



where AF" is the number of states in some region about the

mean energy.

To evaluate _12) and _.13) we note that the proba-

bility that the energy of any subsystem lies between some

energy E and E+dE is just the product of the probability

of a state wm = W(Em) of energy E in this range and the

dU
number of such states _ dE in this range, where F and

w are just the entities we have defined before. To

normalize the probability,

w(z) dE

where the second equation defines W(E). Now, for a sub-

system with many degrees of freedom, W(E) has a sharp

maximum at E = E, its average value. This allows us to

define a "width" of the curve W(E) such that

then

where

dr( ) I[ IV)ar = dE AE

and _F is the "spread" of macroscopic states around

E=E.



From _/.17) and _,13),"

dr" _ S' (E')/kd-_ - " e

Az" _is)

where S'(E') is the entropy of the medium as a function

of its energy, and dE" is also a function of E', in

general. Thus, _ii) gives

S'/k
w - const _e 6 * )dE"
n #AE * (E +En-E (o)

19 )

and integrating,

. S'/k

w n = const _e _ _20)
_E" E" = E(o)-En

Since the body is small, E is small compared with
n

E(o ) . The quantity AE* changes little with small changes

in E', so we replace E" by E(c_. In the exponential we

expand S'(E(o)-En) in powers of En and keep the linear

term

S" (E (o)-En) = s" (Z(o)) - zndS *(Z(o)) j_.21)
dE

(o)

but from thermodynamics

v =  22)

where T is the temperature of the system (in equilibrium

the temperature of the body equals that of the medium).



So, finally, _20) becomes

w n = A e-En/kT

where A is a normalization constant independent of E
n.

_23) is called the "Gibbs distribution" or the

"canonical distribution. " Since_7)

_23)

we have

n

m

1/A = _,, e-En/kT _24)

n

and the mean value of some f is now

" Z Wn fnn

n

-E= f e n/kT
nn

n _25)
-E

e n/kT

n

So far we have implicitly assumed that the number of

particles in the body is a given constant value. We now

wish to generalize the Gibbs distribution to bodies with

a variable number of particles. To be specific, we define

a subsystem as the part of a system included in a specified

volume, and N is the number of particles in that volume. We

shall deal with bodies consisting of identical particles.*

* For generalization to systems of different particles,

Landau and Lifshitz (1958), p.271.



The distribution function now depends not only on the

energy oC the quantum state, but also on the number N of

the particles in the body, and clearly the energy levels

E themselves also vary with N. The probability that
nN

the body contains N particles and is at the same time in

th

the n state is denoted by WnN. (Do not confuse with the

nondiagonal elements of the density matrix, eq. _4).)

We now use the same method as that by which the Gibbs

distribution was obtained. The eutropy of the medium is

now also a function of the N" particles in it:

s" = s "(E",N') _26)

Wri ti,,g

_" = _(o) - EnN

_" = N(o) - _ _27)

(N, the number of particles in the body is small compared

to N(o ) , the number of particles in the whole closed

system. )

Again regarding AE" as constant, _20) leads to

WnN = const, exp {1 S" (E (o)-En/_, N (o)-N)}
_=r28)



We again expand S" to linear terms.

dE = TdS = PdV + udN

From thermodynamics, *

_29)

or

ds dE= -_+ dV- dN

so that

= - _l_3o)
v,n T

_'_ = _u_ _ 31)
\_.N/_, V T

hence

s" (_.(o) - _'_' N (o) - s)

= s'(_.(o),N(o)) - _'_ + u__ _32)
T T

where the chemical potentials (U) and the temperatures of

the body and medium being equal at equilibrium. Then,

the distribution functions are

Wren = A e (fIN - EmN)/kT _33)

In order to evaluate A we wish to express the entropy in

terms of the distribution function. Wedo this as follows.

* Landau and Litshitz (1958), eq. 24.5.
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The distribution function must be an integral of the motion.

In general, there are seven basic additive integrals of the

motion: the energy, three components of linear momentum,

and three components of angular momentum. The latter six

can be made zero by an appropriate choice of coordinates.

Therefore the logarithms of the distribution functions of

the subsystems must be of the form

log w = _ +
n SEn

if the subsystems are quasi-closed.

lin_.avi#v nq _4%

iog W(E) = _ + 8_.

may be written

log w(W.) = log w(E n)

but from _16)

w(_) Ar = 1

SO _13) becomes

_34)

Owing to the

_35)

_36)

S

k log w (_)

but, using the definition of mean value,

s - -k _ w log wn
n

_38)



and from _.33) and _38),

s---klogA- _ ÷
T T

_39)

so that

_T log A = _- _s -

but from thermodynamics

E- TS = F

and

_40)

_44)

F - u_ = _ _41)

where F and Q are the free energy and the thermodynamic"

potential (as used by Laudau and Lifshitz(1958)).

Wn_ = e (n+U_-_)/kT _42)

is the Gibbs distribution for a variable number of

particles (grand canonical distribution). The normaliza-

tion condition is now

Nn

or, using _42),

_= -kT" log _ [e_N/>'T _. e-EnN_T_

N n

which gives the potential Q as a function of T, _, and

V (through E.n).
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Applications of Quantum statistics

As may be seen from _41),

We will use this and _.44)

statistical distributions.

the Presence of exchange effects among the particles of the

gas.*

Then, for the k th state, with n k particles and energy

nke k ,

to derive the quantum

_44) is applicable even in

Ok = -kT log _ (e(_-ek)/kDnk _.46)

nk

For particles which obey the Pauli exclusion principle,

the occupation numbers for each state can only be 1 or 0.

Then

" -kT log (I + e(_-¢k)/k D _47)

%nk _ e(_-_ _)/kT

= %_ l+e(U-¢k)/kT

and

or

= 1

e (¢k -_)/kT + 1

* Landau and Litshitz (1958), p.ll0.

_48)



This is the distribution function of a perfect gas obeying

Fermi-Dirac statistics. Notice that for

e (U-¢k)/kT<<l

it transforms to the Boltzmann distribution. The Fermi

distribution is normalized by

1

_k e(¢k-_) 1 = N _.49)/kT +

where N is the total number of particles in the gas.

Also,

_q = _ _ =-kT_ log <i + e(U-¢k)/kT_
k

For a perfect gas of particles described by a sym-

metrical set of wave functions, i.e., satisfying Bose-

Einstein statistics, the occupation numbers may take on

arbitrary values. Then

= -kT log)
E.A

nk=0

The series converges only

must hold for ek = 0,

u<0

 50)

_e ( _- ck )/kT_

if e(P-¢k )/kT < 1.

 K51)

Since this

-C_-52)

That is, the chemical potential is negative for Bose-

Einstein statistics. Using the geometric series,



o0

, n -iv : (z-v) ,

n=O

= kT log <I - e(U-¢k)/kT _53)

and

1

e(ek -_)/kT - 1

_.54)

Again, for e(U-ek)/kT << I, this reduces to Boltzmann

statistics. The total number of particles N is

k e (ek-_V'kz" - i

.1_ 55)

and

= X % = kTX 10_l- e(U-Ck)/kT_

k k

j_56)

Now, the number of particles in an element of phase

space d3p d3q is obtained by multiplying the distribution

_48) or _54) by*

d3p d3Q

g dT = g h3
_"57 )

where

g = 2S + 1

and S is the spin of the particle.

_58)

* As shown by E.K. Brock, Phys. Rev. 51, 586, (1937),

this also holds for particles obeying the Dirac equation.



That is,

_59)

By integrating over the volume element and denoting

Fermi-Dirac statistics by a"W' and Bose-Einstein by

a"- ," we have

dN (p) -
+

g Vp2 d p

2 2,3qe (c-D)/kT + i)

2
If ¢ << mc , then

p2
E -

2m

_._.60)

_61)

and

/_ dc

(c-D)/kT_+1
e

_62)

consequently,

- 1/2

N+ : --gVm3/2 _o e(e-U)/kTe de _63)
-- g 2"n2. 3 + i

which determines the chemical potential U as a function of

temperature T and density N/V. Transforming from summation

to integration in _50) and _56), and integrating by

parts

2 gVm 3/2 Io e3/2 de _64)
n = -_ /..2.2,3 e (c-uI/kT + 1



which, except for (-2/3) is the energy

gVm 3/2 e 3/2 dc

_ _ _2_ 2 +

_65)

Since*

= -PV

then

2 E
P - +
_+ 3 V--

_67)

which gives us the pressure. This is the well known

relation for a gas with the polytropic index n = 1.5.

Equation _.60) is also correct for a relativisitic

gas (E _ mc 2) if we take

p = 1 ,/w2_m2c 4 "
c

2
¢ =w- mc _68)

where w is total relativisitc energy and ¢ is kinetic

energy. Then

= 13 <¢2+2mc2<)1/2 _¢+ mc2_¢
c.

* Landau and Litshitz (1958), eq. 24.13.



since

2 2 2 2 4
w = ¢ ÷ 2mc c + m c

We choose to use p rather than e as our variable however,

and if

2

x = P-- , _+mc
mc ' _ = 2

mc

2
mc w

8 - kT ' Y = m---_c

then,

N+ = 4_g x2dx

_= o exp[ 8 (Y-U') ] + 1
_E70)

P
+

4

= {4_m4c5% i_ x dx
h 3 J_ o y[e 81y-u_) + i]

I_71)

E+ = _'4wq m4c 5 ], _ yx 2 dx
-_ L 3h 3 J : [eS(Y-U) + i]

V

_72)

We now consider some limiting values for the

parameters in the equations above. Recalling that for

e(P-¢)/kT << 1 _73)



the Bose-Einstein and Fermi-Dirac distributions transform

to the Boltzmann distribution, so that for low densities

and high temperatures the equation of state is that of an

ideal gas for the nonrelativistic case.

2
In the relativistic case (kT _ mc ) electron pair

production is possible, and in the extreme limiting case

2 *
kT >> mc , for low density of initial electrons,

and

where

Ne- = Ne+ = 0.183 /k_knc/(_=)3

2 (kT)4
E = -
e- Ee+ 120 3

_74)

v 1 ..7s)

1
P + =- E + /V _76)
e-- 3 e--

Ptotal = Pe + + Pe- _77)

These relations are obtained from limiting forms of _70),

The next limiting case we consider is that for

T - 0. The results are different for Fermi-Dirac and

Bose-Einstein statistics.**

* Landau.and Lifshitz (1958), p.325-6.

**Landau and Lifshitz (1958), p.168-71.



In the former case we first consider (kT << mc 2) .

as T - 0, the expression

Then

1 { 1 , ¢ <_( )/kT =
e + 1 0 , C >_

So _63) becomes

N = _V _o O gVPo3

2_2_3 p2dp = 6n2A 3 _79)

where for the limiting momentum Po (corresponding to

e =_) is

Po = <#)I/3 <N)I/3_

and

2

CO = PO
m

2m

Thus at the limit T = 0, the chemical potential

corresponds to the Fermi energy of the particles.

Similarly,

3 6 2 2/3 h2 @2/3 _82)'

2
= -- p

3
 83)



The condition for the onset of degeneracy, i.e. that

these relations be applicable, is that

kT <<co
_84)

A real degenerate electron gas is better approximated

by an ideal degenerate gas as its density rises. To show

this we consider a neutral ion-electron gas. The coulomb

interaction energy is of the order of

2
Ze

a

per electron, and

a -- <_i/3

is of the order of the mean distance between electrons and

nuclei. If this energy is small compared with the average

kinetic energy per electron (of order ¢o) then the gas can

be regarded as perfect. So.

or

2
Ze
-- << CO

a

e2m 3 __.85)



which is better satisfied for higher densities.

We again consider an extremely degenerate ga_, but in

2
the ultra-relativistic limit, kT >> mc . Then _68) gives

w = pc, w = ¢ _86)

Again we have

6 2 1/3 <_i/3

but

_87)

co = poc

62 1/3 1/3 _88)

The total energy of the gas is

E

gcV

2_2h 3

4
gcp0

8_2h 3

v  _89)

or

2 1/3 1/3

3 6_ hc<_ _90)

and for an extreme relativistic gas

1 E

P- 3 V

holds, so that



i /6n2_ I/3 N- 4/3

Let us briefly summarize these results. Figure El)

shows schematically the regions in which each of our

approximations is valid. In the boundary zone between

degeneracy and nondegeneracy, and also the boundary zone

between relativistic and nonrelativisitc regions, numerical

techniques must be applied to equations _70), _71), and

.72).



log T

2
T _ mc

R, ND (2)

NR, ND

(i)
I R, D

I (4)

NR, D

I

P _ 10 6 gm/cm 3

I

.log p

Region (i) - ideal gas law (nonrelativistic, nondegenerate)

Region (2) - pair production must be considered

(relativistic, nondegenerate)

Region (3) - nonrelativistic degeneracy

Region (4) - relativistic degeneracy

Region (5) - border between degeneracy and nondegeneracy

where the equation of state must be

determined by numerical means.

Figure lILl
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Ther!nalConductivity in a Deqenerate Fermi Gas

This calculation was made by Mestel _1950) and Lee

(19_O). We follow Mestel's method. In calculating the

thermal conductivity of electrons account must be taken

of f_rst-order deviations from the Fermi-Dirac distribu-

tion which arise partly from the temperature gradient of

the star and partly from collisions between electrons and

nuclei.

For a uniform temperature the Fermi-Dirac distribution

function _48) may be rewritten as

1
f (_) = _92)
O l+e(e-_)/kT

. |--e

•where ¢ = _ mv 2 v = Ivl _93)

fo(_) is independent of th_ direction of D. With a

temperature• gradient dT the corresponding distribution
dx'

f(_) is slightly different from f (_), and does depend
o

on the direction of _ as well as its magnitude. The

particle current is then

3

I = gmh3 _Vxf (_)d 3v
_94)

and the energy flow is



3

.[cvxf 3= v .I_. 95 )
Q h3

where g=2 for electrons. The flow of electrons leads to

an accumulation of space charge and the resulting field

opposes the further drift. In equilibrium the electric

field just compensates the effect of the temperature

gradient. Hence the flow of electrons is zero:

I = 0 _96)

Also, the equilibrium state is characterized by the

requirement that f(_) is independent of time t. The

temperature gradient, the electric field, and the col-

lisions between the electrons and the nuclei tend to change

f (_) . In equilibrium,

_f + _- _ _f(_collisions _ + (_E field = 0
--St .temp. grad.

Equations _95), _96), and _97) lead to the required

thermal conductivity.

In a star of given composition, _, the chemical

potential, depends on p and T. The equation of mechanical

stability _ relates p and T (with the equation of state)

so that they are not independent variables. We regard p and

as functions of T only. Then, with _92) we can show that

_97)



af (_) _f (¢)
o o Cd-e_ c_:ehdT

dx = _¢ kdT + T / "_x

We replace f by f in the second and third terms in
o

_97). Then we have the results,

_f

emp. grad x 5_kdT + T /dx
_99)

_f
f_

q_E field = -ev x _¢ _i00)

where e is the electronic charge and F is the electric

field in the x direction due to the effect of the temperature

gradient. So,

_--_coll. _f _-_'_El= Vx_[eF- <d_T+ T/dxJ 1_,.lOl)

Now obtain expression for _--_ bywe an _t coll. considering

collisions between electrons and nuclei, it will be assumed

that the collisions are elastic, a good assumption if the

nuclei are completely ionized. For simplicity we consider

collisions between electrons and a particular nuclear species

of atomic weight a, nuclear charge Z, mass M, and number

density Na.

Let P(_, _', V)dVdw' be the probability per unit time of

an electron of iniuial velocity _ being scattered with

velocity 7' into the element of solid angle dw' by nuclei

with velocities in the range V to 9 + dV.



From the nature of collisions,

--_ --D

P(_, _', v) = P(_', _, v)

For elastic collisions, 191 = I_'I,

If we define g(_) by

then

f(_) = fo(_) + g(_) _102)

dT

dx
- O, the difference between f (_) and f (_) would

o

disappear due to collisions in a relaxation time

103)

_q_)'Btcoll.

An important feature of collision processes is that 7(7)

must be effectively independent of the direction of 3.

Then (2.103) gives

L St 5t coll. '

Using (2.101),

z 1 dw'(Vx-V ) ] PCV,-_'V)d? _[F_106)T(v) - v x '
x

From the theory of collisions



_3

P (v,-_', _) --

4 2
n e Z 3/2 MV 2

2 3 2 e 2kT
m I_-Vl (1-cos_,)

_I07)

where _ is the angle between _ - V and 3' - V. Evaluation

of _106) using _107) may be simplified by noting that

the important contributions to (2.106) come when

(v/V) + (M/m) I/2 >> i.
3

ThusI_- _I _ v

where 8 is the angle between _ and _'.

Then

4 2
I

i n e Z (Vx-V x )

a _ dw' )2•(v) - 2 a J -(l-cos
aLL v v

x

:_1o8)

_nich can be reduced to

4nn e4Z28
1

m

(v) 2 3
m v

_i09)

where

8= 2

o

sined6 1

l-cos_ 2
2

iog_l-cos%; 11_-11o)

and ,3° (the ratio of the de Broglie wavelength of the

electron to the screening radius of the nucleus) is a

"cut-off" angle from collision theory. Equations _101),

104), and 109) give the zequired solution for g(v).



m2v 3

g(_) = ....
4nn e4Z28 _<

a

_ing _p. 111) we have from _94), _95) and _96)

after some work,

Q =-C f c4 _-Sf° [oF' - _T _xjdT_dc
-m_.zz2)

F 3 5f0 = ¢ O-eF, _ dT_.
-- _xx]d¢_¢ L T

"ll,..zz3)

where

eF' = eF - du d_.TT
dT dx

and }

C

16m

3h3e4Z2n ®
a

llll,. ].].4)

Introducing y = (¢-_)/kT and k = e _/kT _i12) and _i13)

become

-4 4r _

Q = Ck T J dy
-logl

, _ dT.
eY(eF -kY_d x}

iY+ log _ )4
_If-,zzs)

, . dT.
ey (eF -kY_d x)

(l+e y)

(y+logk)
3 ,l_rF].z6)

Defining

K (k) = ]" xPeXdx

P -logk (l+e x) 2



we can reduce _I15) and _.i16).

unknown F' between the two. Then

We then eliminate the

d_ _. 118)
Q=V dx

where the thermal conductivity

e_/kT and

where

is in terms of 1, i.e

A = log3XKo(k) + 31og2kK (l) + 31ogkK2(1) + K3(k) _.120)

B- log6_,(KoK2-K12) + 3log 5 (Ko_3-_lK2)

+ 31og4k(KIK3-2K22 + KoK 4)

+ Iog3A(KoK5- 8K2K 3 + 7KIK 4)

+ 31og2_,(_1I<5- 2K32÷ K2K4)

+ 31ogI(K2K 5 - 4) ÷ (_:3_5 - K42)

1
when k < --

50'

J

two decimal accuracy can be obtained from

128mk 5 T4

h3e4Z2n 8
a

_12l)

and similar accuzlcy from



ii 2 7 4 2 49 6
2 5 4(iog6k _11 iog4X + 75= c_-k T + _ log X ---

iogl (1og2l + 2)

when _ _ 200.

kT
In the limit of large- where

cf
cf is the fermi level,

with

m

Cn 2 5 4 c_3

ef 5[mHnc_2/3

k-_ = 2. 996 * i0 kT--_/

2 2/3

< _ log-i/2 ¢= log 3/21 + -_

This formula gives second order accuracy for k k 300.

Note that _ - _ is the nondegenerate limit.
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ABSTRACT

A method is outlined by which thermonuclear reaction rates can be determined
from the statistical properties of nuclei. Assuming that the contribution to the
cross section of a given resonance is given by the Breit-Wigner single-level for-
mula, the total rate is determined by integrating the product of the cross section,
weighted by the nuclear level density, and the velocity over energy. The nuclear
radiation widths were calculated on the assumption that electric-dipole tran-
sitions are dominant. The particle widths were determined by approximating the
nuclear strength function by that value calculated for a black nucleus. Nuclear
cross sections calculated in this manner are compared with experiment both for
charged-particle reactions on lighter nuclei and for neutron-capture reactions

roceeding on nuclei in the mass range A > 60. Good agreement is obtained in
oth cases.

I. INTRODUCTION

The methods employed in the calculation of thermonuclear reaction rates

for reactions proceeding on light nuclei are well known (Salpeter 1952; Reeves

and Salpeter 1959; Reeves 1964). At low excitations the nuclear levels are

widely spaced and the reaction rates can be computed as a sum of the off-

resonance contributions from these isolated resonances, where experimental

values of the resonance parameters are available.

We have been concerned with the problem of calculating the formation of

the iron peak elements in stellar interiors and with the production of heavy

elements by neutron capture. For these nuclei, A > 28, there are many

resonances in the energy range of interest for which experimental parameters

are not available. Under these conditions it is necessary to compute the

reaction rates from the known statistical properties of nuclei.

The determination of the reaction rates for nuclei in this mass range is the

subject of this paper. The assumptions we have made and the methods em-

ployed in these calculations are outlined in Sections II to VII. In Section VIII

the cross-section results obtained are compared with experiment for a variety

of cases. Applications of these rate calculations to astrophysical problems will

be reported in other papers.

II. THERMONUCLEAR REACTION RATES

In general, the number of reactions per unit volume per second, r, between

two nuclear species with number densities nl and n2 and masses ml and m2
can be written in the form :



(2.1) r = ,,hi(or).

Here (av) is an appropriate average of the product of the reaction cross section,

_(v), and the relative velocity of the nuclei, v,.

_(v)vn(v)dv

(2.2) (av) = fN(v)dv '

where N(r) is the number density of nuclei having relative velocities v. As-

suming that the velocity distributions of the two species are Maxwellian, the

expression for (av) takes the form:

(;)'(2.3) (av) = (kT) -3'_ Ea(E) exp(--E/kT)dE.

In this expression k is the Boltzmann constant, T is the temperature, E is the

kinetic energy of relative motion, Et is the threshold energy, and # is the
reduced mass

(2.4) p = mlra2/(ma + m2).

The Breit-Wigner form of the cross section for the capture of particle a

nucleus near a resonance at energy E, is

2J-l- 1
(2.5) .(_, ,) = _/(2so + 1)(2z + 1)

I+z. _+s i_aii_7

x _ _ _'(_"_) (E.--_)2 + (r/2)2.S--1I-8,,I /._ I .,r--S I

The corresponding cross section for a particle-particle reaction involving a as

the incoming particle and b as the outgoing particle (leaving the residual

nucleus in a definite state) is

o 2J+ 1

(2.6) a(a, b) = _r_L," (2S,,-I-- 1)(2I-t- 1)

I+,_a l"+Sb J+S J+S , ra ,r b ,'

× Y]" Y:" _] _ _'("'*)_"('_'*) (E. E_)_ + (r/2) _"
S--II--Sa] S --[l'--Sb[ Z--!J--S] |"=J--8"

J, 1, I', Sa, Sb are the spins of the compound nucleus, the target, the residual

nucleus, and the incoming and outgoing particles, respectively. X__ is the

reduced de Broglie wavelength of the incoming particle. S, S' are the incoming

and outgoing channel spins, which are vector sums of I and S_ (or I' and S_).

l, l' are the orbital angular momenta of the incoming and outgoing particles.

_r_, _r_, _r_ are the parities of the target nucleus, the residual nucleus, and the

compound nucleus. I'_ and I'_, are partial widths for decay of the compound

nucleus by emission of particle a (or b) with orbital angular momentum l (or

/'). I'_ is the partial width for gamma decay of the compound nucleus. I" is the

total width of the resonance, which is the sum of all partial widths. E, is the

energy of relative motion of the incoming particle. E, is the energy of the



resonancefor the incoming particle. Finally, o_(Tr,T,)= ½[1+ (-- 1) 'T,_r,] is a

factor that ensures parity conservation, being 1 if 7r, = (--1)_*ra, and 0 if

=, = (-1)'iT a.
The total width for decay of the compound nucleus by emission of particle

a is

l+3a Jr+3

(2.7) r.= _E _ o,(_a_c)r,,.
8--1Z--Sa I l_l J--81

Thus, the single-level cross sections are simply

(2.8)

(2.9)

where

ra rv

_(a, _) = -xa_ (Eo - p._)_+ (r/2) _'

ra r b
a(a, b) = _X."g (Ea- Er)" + (r/2) _'

2J+ 1

(2.10) g = (2S_ + 1)(21 + 1) "

For a narrow resonance, we assume that X_, ra, r_, and rv vary slowly

over the resonance peak. The contribution of this resonance to the' average

cross section is therefore given by

1(2.11) if(a, b) -_a_rarb (E_ - _)_ + '''_r/2/dE_

= 27r2g (_.a2 Far_ ,
r /Ea_Er

where, in order to extend the limits of integration from -- _ to o0, we have
assumed that the contributions from the resonance tails are small.

The density of levels at an excitation U of the compound nucleus is denoted

by p(U, J, T). We assume that (av) can be written in terms of an averaged

cross section given by a(a, b)p(U, J, _r) integrated over energy for a given

compound nuclear level (U, J, _). The total rate is then given as a sum over

the possible spin and parity states of the compound nucleus:

2.51 X 10 -13 1

(2.12) (av) - (_T9)3/2 (2S_ + 1)(2I + 1)

X _ (2J-t- 1)
JtM"

_--"-_ --11.61Z/int_.rr 7" r_r__m'_e_-'
(l__.e pk_, .It f)

r

where z is in a.m.u, and :/'9 is the temperature in units of 10 9 °K. The cor-

responding expression for the rate for particle capture reactions is given by

(2.12) with F} _ r,. These are the general expressions evaluated by us in

our determinations of the reaction rates.

We must now consider the approximations employed in the determination

of the nuclear parameters contained in equation (2.12).
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III. THE ATOMIC MASS FORMULA

We may write the nuclear mass excess in MeV on the 12C scale of masses

in the form (Cameron and Elkin 1965)

M -- A = 8.07134A -- 0.78261Z + F_. + Eo +Eex + S(Z, N) + P(Z, N),

where Evs includes both volume and surface corrections, E, is the Coulomb

energy correction, Eex is the exchange term, and S(Z, N) and P(Z, At) are

the total shell and pairing corrections for protons and neutrons.

From a consideration of the abundance yields for the heavy uranium isotopes

in the Mike fusion explosion of 1952 Cameron (1959) suggested that perhaps

the neutron binding energies for the successive neutron-rich isotopes should not

fall off as fast as is generally predicted by nuclear mass formulas. With regard

to this question, consider the combined volume and volume symmetry energy
in the form:

(3.1) F_ all B(A "_2Z)9] _'A.

The values of these coefficients were determined by Cameron (1957) to be-

a = - 17.0354 MeV,

B = --31.4506 MeV.

This formula would then predict that the binding energy per nucleon will

change from --17.0354 MeV for A = 2Z to 14.4512 MeV for a pure neutron

gas. Theory predicts, however, that a pure neutron gas should be only slightly
unbound (Salpeter 1960).

Cameron and Elkin (1965) have suggested a form for the volume energy

term that will reproduce the conventional results in the region A ,_ 2Z, while

simultaneously leaving pure neutron matter slightly bound, viz:

(3.2) E. = aA exp[ a__(A -_2Z)'] .

This will have the effect of increasing the neutron binding energies for the

neutron-rich isotopes far from the valley of beta stability. The fact that pure

neutron matter is still slightly bound suggests that this correction has gone

too far and that a more realistic extrapolation toward the neutron-rich region
lies between these two extremes.

The shell and pairing energies employed in our calculations are those

determined by Cameron and Elldn in this investigation. The neutron binding

energies predicted by the conventional and exponential forms of the mass

formula differ significantly. This problem will be considered in more detail in

our discussion of the neutron-capture cross sections for the uranium isotopes.

IV. THE NUCLEAR LEVEL DENSITY

Perhaps the most Critical factor in our determination of (av) is the nuclear

level density. Gilbert and Cameron (1965) have recently examined this subject



in some detail. From a study of the known levels at low excitation energies

and of the behavior of the level density in the vicinity of the neutron binding

energy, they have determined parameters defining a fit to the observed level

densities.

The original formulation of the statistical theory of nuclear level densities

is due to Bethe (1937). In this theory the nucleus is considered to be a Fermi

gas of two types of fermions. Treating the number of protons, the number of

neutrons, the total energy, and the total magnetic quantum number as con-

stants of the motion, we can define the grand canonical partition function for

the system. Proceeding in this manner, Gilbert and Cameron (1965) arrived

at the following expression for the density of states of all possible magnetic

quantum numbers, M:

lr 1/2 exp[-- 2 (aU) 1/,]
(4.1) oo(U) - 12al/,U5/4

In this expression

(4.2) a = -_Tr_g,

where g-_ is the single-particle level spacing,

(4.3) U= E-- U0

is the effective excitation energy, and U0 is the Fermi energy.

oJ(U) is the total density of states, including states degenerate in the mag-

netic quantum number M. We require, rather, an expression for the density

of levels of given angular momentum ./, parity ,r, and energy U. Following

Bethe (1937), the density of levels of specified J can be written in the form:

o_(U) (2J + 1) exp[-- (J + ½)2/24_].
(4.4) p(U, J) _ (27ra),/_ 242

In the absence of experimental evidence favoring even or odd parity states,

we shall assume that there is equal probability for either parity. The density

of levels of spin J, parity r at an excitation energy U is thus given by

1 e 2(a_)'/' {(2J + 1) exp[-- (J A- ½)_/2as]}(4.5) p(U, J, _') - 12 (2) i7_ _/-a--_s7_ _ 242 {_}

In this expression a is the spin-dependence parameter given by

(4.6) a s= g(m2)t,

where t is the nuclear temperature

(4.7) t = (U/a) ½

and (m *) is the mean-square single-particle magnetic quantum number.

Jensen and Luttinger (1952) have demonstrated that the succession of shell-

model states implies that

(4.8) (m s) ,-_ 0.146A 2/8,



with some fluctuations attributable to shell effects. Thus we find that

(4.9) _' = 0.0888 (aU)I/'A 21a.

In this formula there are, in effect, two free parameters, a and U0. It was

assumed initially that U0, the energy of the fully degenerate state, represented

the ground state of the nucleus, a could then be determined from experimentally
known neutron resonance spacings. However, it was found that there would

be systematic differences in the values of a for neighboring even-even, odd-A,

and odd-odd nuclei. Thus, a pairing correction is necessary. Such a correction

is, in fact, supplied by the mass formula; if U0 is taken to be the "pairing
energy", it is found that these odd-even effects can be taken into account.

The treatment of the nucleus as a Fermi gas gives a _ A. This would not

allow us to account for the obvious shell effects in neutron resonance spacings.

Gilbert and Cameron (1965) determined the following correlations for the

parameter a: for undeformed nuclei

(4.10a) a/A = 0.00917S + 0.142 (MeV -1)

and for deformed nuclei

(A I(IL'_ -- / A __ fi /I/_fil*/C I fi loft /'All_IT--I\

k.J-.a-',.Iv/ to/ xx -- "_..i.,,J't,poa. m*,_ i ,o.x_,t.s _kivx_:v ].

Here S is the total shell correction, the sum of the shell corrections for neutrons

and protons. The shell and pairing corrections employed in these calculations

are taken from Cameron and Elkin (1965) for the exponential form of the
mass formula.

The Bethe formula is not expected to be valid at low excitation energies.

Ericson (1959) has shown that the expression

(4.11) p(E) = {exp[(E- Eo)/T]}/T

provides a good fit to empirically determined nuclear levels over the first few

MeV of excitation. The density of levels of specified angular momentum and

parity is then given by

(4.12) p(E,J,_') o(E) (2 1) exp[--(J+_) /2a] {½}.

Gilbert and Cameron have shown that a reasonable and self-consistent descrip-

tion of the level density at any excitation can be obtained by using the Bethe

formula at high energies, the Ericson form at low energies, and fitting the two

tangentially. They give values of the parameters a, E0, and T for nuclei for

which experimental information is available. It was also found that the energy

E, at which the two formulas were fitted tangentially is given approximately by

(4.13) E_ = 2.5 + (150/A) + U0 MeV,

where U0 is the pairing energy. If the nuclear levels are not known experi-

mentally, the value of a may be obtained from equations (4.10), and T and

E0 are then determined by fitting the two density formulas at an energy Ez,

determined from this expression.



V. RADIATION WIDTHS

As experimental determinations of the nuclear radiation widths are not

available, it is necessary, for most of the nuclei of interest in our investigation,

to calculate these widths by theoretical means. Only electric-dipole transition

widths will be computed, since, in general, these contributions are dominant.

Following Blatt and Weisskopf (1952), we can write the total radiation width

for electric-dipole radiation from a level of energy Ea, spin J, and parity .

in the form:

A 3/3 f:o(5.1) r.(E.,J, .) = 0.296-D-7 1 Esp(E. -- E,J; .)dR,o j., p(E., J, .)

where Do is effectively a normalization factor, although it may be interpreted

in some sense as the single-particle level spacing. Assuming an equality of the

parity distributions and neglecting the exponential term in the angular-

momentum dependence of the level density, the summation is performed over

all allowed values of J',: of the daughter levels consistent with electric-dipole

selection rules (AJ = 4-1, 0; not 0--* 0; parity change). This introduces a

factor

[2(J+1)+ 1]+[2(J- 1)+l]+[2J +1] 6J+3
-3

(2J+l) -2J + 1

into the expression for the width; hence

(5.2) r,(Ea, J, -) 0.89A v3 1 _"= Do p(E_) E3p(E_- E)dE.

Employing the level density parameters from Gilbert and Cameron (1965),

we have compared the widths calculated from this expression with experi-

mental values for a large number of nuclei with A > 40, with the requirement

that at least the value of r_ for one level in the nucleus had been definitely

established. These experimental values were taken from the Nuclear Data

Sheets and from Hughes et al. (1960). The value of Do inferred from these

calculations was Do _'_ 230 MeV. Calculations performed for A < 40 led to a

value Do ---_ 400 MeV.

The ratio r_ (calculated)/r_ (experimental) from these calculations is

plotted in Fig. 1. The experimental errors associated with the values of 1'7 are

generally <30o7o. The dashed line in this figure is a "guide to the eye" for this

ratio. The solid line corresponds to the optical model, deformed nucleus s-wave

neutron-strength function due to Chase et al. (1958). The general behavior of

these two curves is quite similar for A >_ 80.

Cameron (1959) has suggested a possible explanation of this effect. The

admixture of single-particle wave functions into the actual wave function in

the region of the neutron binding energy is largest in the vicinity of the maxima

of the neutron-strength functions. As the electric-dipole matrix elements are

proportional to the degree of overlap of the wave functions of the initial and

final states, which in turn is larger when the admixtures of single-particle wave
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FIG. 1. The ratio of I'_ (calculated) to I'_ (experimental) is plotted as a function of mass
number. The optical model, deformed nucleus s-wave neutron-strength function due to Chase
a al. (1958) shows similar behavior.

functions into the initial states are larger, the values of P, for electric-dipole

transitions following s-wave neutron capture might be expected to peak in the

vicinity of the s-wave neutron function maxima.

VI. PARTICLE WIDTHS

From nuclear reaction theory, the particle widths can be written in the form :

(6.1) Ih = 2Pz_'_ _.

In this expression l specifies the value of the orbital angular momentum. Pz

is the nuclear penetrability defined by

(6.2) P_ = o/[F_2(p) + G_2(p)]

and

(6.3) p = kR,

where R is the nuclear radius and F_(p) and G _(p) are the regular and irregular

solutions of the Coulomb equation (Hull and Breit 1959).

The factor _,_" is the reduced width for the particle channel and is dependent

upon the behavior of the wave function within the nucleus. Generally a detailed

knowledge of the form of the reduced width is not available. For s-wave

neutrons the behavior of the strength function, defined by

(6.4) S,(R"t ,'/D ,),



where R is the nuclear radius and D_ is the level spacing, has been studied

extensively (Chase et al. 1958). Some evidence is available concerning the

behavior of p- and d-wave neutron-strength functions and of s-wave proton-

strength functions, but the results are far from complete.

We have assumed in these calculations that the strength functions for the

various partial waves for protons, neutrons, and alpha particles can be ap-

proximated by the strength function predicted by a "black nucleus" model.

On this model _,,_ can be written in the form:

2 X 10 -x4

(6.5) -----Rp(E, J, T)"

In our calculations of reaction rates we have assumed the particle widths

to be given by equation (6.1), with a reduced width as defined by equation

(6.5). In this approximation the only dependence on the orbital angular mo-

mentum is through the penetration factors. The level densities are determined

from the parameters presented by Gilbert and Cameron (1965). The nuclear

radius is determined from an expression of the form

(6.6) R = ro(Ap '/' q- Arl/a),

where Ap and Ar are the mass numbers of the projectile and target nucleus

respectively. This will be discussed in more detail in the subsequent sections.

VII. THE CALCULATION OF THE REACTION RATES

A computer code was prepared to calculate the reaction rates as a function

of temperature, incorporating the various approximations outlined in the

previous sections. Employing equation (2.12) for particle-particle reactions

and the corresponding expression for particle-capture reactions, the contri-

butions to the rate for ground-state interactions were computed. The sum-

mations were performed over all values of the channel spin and of the orbital

angular momentum, l, consistent with the spin and parity Of the compound

nuclear state (J, zr). Furthermore, summations were carried out over all

integer and half-integer values of J -.< 11/2 for both parities.

The level densities employed in these calculations were determined from

equations (4.5) and (4.12) and the level-density parameters tabulated by

Gilbert and Cameron (1965). In our investigation of neutron-capture cross

sections for comparison with the results of Macklin and Gibbons (1965), it

was necessary in some cases to determine the level-density parameters from

the pairing and shell corrections. This was also necessary in our study of neutron

capture on uranium isotopes.

The radiation widths were calculated as a function of energy from equation

(5.2). A value of Do = 230 was employed for mass number A > 40. For

A ..< 40, Do = 400 provided a better fit to the data and was thus incorporated
into our calculations.

The particle widths for protons, neutrons, and alpha particles were com-

puted from equations (6.1) and (6.5). Insufficient experimental measurements

were available in the energy range of interest to permit, generally, a more



refined determination of these widths. It is evident that large uncertainties can

be assigned to these calculated values for a given orbital angular momentum.

As even partial wave-strength functions tend to attain maxima near the

minima of those of odd partial waves (as for instance in the case of s- and

p-wave neutrons) it was felt that the resulting rates might be somewhat better
than the uncertainties inherent in the individual widths.

The total widths are determined as a sum of the contributions from the

radiation widths and the various particle widths. The contributions from the

excited states are not included. Corrections due to particle-width fluctuations

(Lane and Lynn 1957) are neglected, since these are small compared to un-
certainties associated with level densities.

These various parameters were determined as a function of energy over a

range defining the maximum contribution to the integrands of equation (2.12).

A sufficient number of points were taken to allow for a good Simpson's Rule

numerical integration. Any errors introduced by this method are far smaller

than the uncertainties in the nuclear parameters employed.

VIII. COMPARISON OF RESULTS WITH EXPERIMENT

Where experimental determinations of cross sections or of individual reso-

of our calculated values for (or). Four sources were available for this purpose.

(a) Experimental determinations of (p, n) cross sections on nuclei from s'C1

to 59Co are available for proton energies below the threshold energy for neutron

emission to the first excited state of the residual nucleus. (b) Experimental

determinations of the individual resonance parameters are available for a

number of alpha-particle and proton reactions on light nuclei. This allows a

determination of the (or) as a sum over the contributions from individual

resonances. (c) Average neutron-capture cross sections determined from

experimental measurements and resonance parameters are available for a

range of target mass number, A = 54 to 208. (d) The yield curve from the

Mike fusion explosion suggests a slow decrease in the neutron-capture cross

section with increasing mass number for heavy uranium isotopes' This behavior

can be examined, employing the shell and pairing corrections and the neutron

binding energies predicted by the exponential mass formula of Cameron and

Elkin (1965).

(a) (p, n) Reaction Cross Seaions Near Threshold

Johnson et al. (1058) have published experimental results for (p, n) reaction

cross sections near threshold for a number of intermediate nuclei. We have

computed these cross sections for proton energies below the threshold for

neutron emission to the first excited state of the residual nucleus.

We assume that the cross section for capture proceeding through a compound

nuclear state of spin J is given by the Breit-Wigner one-level formula. The

cross section due to energy states of a specified spin-parity combination J"
is thus

(8.1) o-(E,j, ,-) _
4.065

pE g p(E, J, ,0,



where g is the statistical factor and # is the reduced mass in a.m.u. The total

cross section is determined by summing these contributions over all values of

the spin and parity.
We have defined the nuclear radius to be of the form

(8.2) R = ro(Ap '/s + A-r l/s) fermis,

where Ap and AT are the mass numbers of the projectile and the target nucleus

respectively. By this choice we have pictured the compound nuclear radius as

a sum of the radii of the interacting particles. It is well known that there is no

one expression for the nuclear radius that will fit all the experimental data

(electron scattering, alpha decay, reaction cross sections, etc.). To the extent

that any choice of a sharply defined nuclear radius is somewhat arbitrary, we

have chosen to treat r0 as a parameter in fitting our calculated cross sections

to the experimental determinations.

5O

4O

30

O3

20
o

,°I
0

1.6

I t I

sTCl (p,n)_TA

/ / "/ ,o's-

S,
1.7 1.8 1.9

J5/

/ v;

/

x'f ,,o

V /J

I I I

2.0 2.1 2.2 2.3

Proton Energy (MeV)

FIG. 2. The cross section for the reaction *TCl(p, n)S_A, calculated for several values of the

radius parameter r0, is compared to the experimental results due to Johnson et aL (1958).

The results of these comparisons are illustrated in Figs. 2 to 7. The ex-

perimental points are due to Johnson et al. The calculated cross sections are

plotted as a function of energy below the excited-state threshold for a range of

values of r0. We conclude from these figures that the choice r0 - 1.20 provides

the best fit to the data. This is in good agreement with the square-well radius

R = 1.45(Ap + AT) 1/s employed by Johnson et al. (1958) in their calculations

of the proton strength functions.

(b) (or) Evaluated from Known Resonances for Light Nuclei

For a number of light nuclei, experimental determinations of the resonance

parameters are available for a large number of levels in the energy region of

interest. This should allow us to calculate with reasonable accuracy the values
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the radius parameter r0, is compared to the experimental results due to Johnson et al. (1958).

of (av) for these reactions. The total (or) is determined by summing over the

contributions from the individual resonances as given by the equation

. .(8.3) (av)= _ \t_z \'_] X"'(E')e-n'/_r

Experimental determinations of (gI'aFn/F)Br for eight reactions involving

protons and alpha particles on light nuclei were reasonably complete in the

appropriate energy range. These reactions are listed in Table I together with
a statement of the number of resonances for which the relevant parameters

are known, the energy range in which these resonances lie, and the reaction

Q value. The ratios of the values of (or) determined by the general procedure

outlined in the previous sections to (av) determined from experimenta! param-

eters are plotted as a function of temperature in Figs. 8 and 9 for two values

of the nuclear radius parameter, r0 = 1.20 and 1.45. The agreement is generally

better for the choice r0 = 1.20, inferred from our investigation of (p, n)

reaction cross sections.

Discrepancies of a factor of two or three of our rates from the experimental

values can readily be accounted for through the uncertainties in our values of

the particle and radiation widths and in the level densities. Furthermore, the



TABLE I

Summary of experimental data on resonance parameters

Reaction

Energy range of
Number of bombarding particle
resonances Q (MeV) (MeV) References

tuNa (p, q,)
"Mg(p, -},)
27AI(p, "r)
=°Si(p, v)
aMg(a, _,)

"Na(p, a)

27Al(p,a)

sip(p, a)

22 11.693 0.25-1.45
120 8.272 0.3-3.0
61 11.581 0.2-2.2
70 7.286 0.5-2.7
29 1.986 1.5-3.8

21 2.379 0.3-1.5

31 1.595 0.5-2.5

27 1.917 0.5-3.1

Pr0sser et al. (1962)
Van der Leun and Endt (1963)
Antoufiev et al. (1963)
Van Rinsvelt (1964)
Smulders and Endt (1962)
Weinman et al. (1964)
Kuperus et al. (1963)
Fisher and Whaling (1963)
Andersen et al. (1963)
Abuzeid et al. (1963)
Kuperus et al. (1963)
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parameter, r0 = 1.20.
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uncertainties in the experimental values of (gr=Ya/P) may contribute to the

disagreement.

The large deviation of 23Na(p, a) is due to the fact that there are large

contributions to the integral from resonances at energies higher than the

maximum energy of the experimental resonances. The other reactions give

satisfactory results.

(c) Neutron-Capture Cross Sections

Macklin and Gibbons (1965) have recently published a rather extensive

compilation of experimental determinations of neutron-capture cross sections

in the energy range of importance to astrophysics. Their results afford a good

check on the statistical methods employed in our calculations for a large

.number of nuclei.

Conveniently Macklin and Gibbons have transformed the experimental

microscopic cross sections into effective cross sections for neutrons in a Maxwell



distribution. That is, by summing over the contributions from the individual

neutron resonances they have determined the rates (or) in the usual form

4 _r exp- v 2
(8.4) (or)- (Tr)--r2_ \vT/ -_T dV,

where

(8.5) vT = (2kT/ ) 1/2

is the most probable velocity in the Maxwell spectrum. The resulting cross

sections are expressed in the form:

(8.6) =

For purposes of comparison we have divided our calculated values of (or)

by the most probable velocity. These comparisons were performed for an

energy corresponding to kT = 30 keV and are displayed in Table II. The results

of these calculations of (or) for neutrons are rather insensitive to the definition

of the nuclear radius. The neutron width can be written in the form

(8.7) I O.2 1r,(u,J) = 2P, Rp(-ff, j) '

where the radius R is in fermis. For neutrons P0 = p = kR and in our ap-

proximation the width is independent of the radius. For the case l = 1,

Pl = p3/(1 + p2), where for p > I we still have P1/R ,_ k. Thus the discussion

of the nuclear radius given in the previous sections is not relevant.

We have calculated cross sections both from known level-density parameters

(Gilbert and Cameron 1965) and from nuclear parameters predicted by the

exponential mass formula of Cameron and Elkin (1965). The agreement of

these calculations with experiment is particularly good for those nuclei for

which sufficient levels are known to permit a determination of the various

level-density parameters. Generally the agreement is within a factor of two

or three over a range in mass number A from 54 to 238.

(d) Interpretation of " Mike" Abundance Yields

Cameron (1959) has considered in some detail the results of the Mike fusion

explosion of November, 1952. The large neutron flux released in this explosion

resulted in the formation of heavy uranium isotopes by multiple neutron

capture. The yield curve for these isotopes is displayed in Fig. 10. It is observed

that the yields of both even and odd mass numbers are exponentially decreasing

functions of the mass number, odd mass numbers being suppressed by ap-

proximately a factor of two. The general character of this curve, the constancy

of successive product abundance ratios, suggests that the neutron-capture

cross sections cannot fall off rapidly with increasing mass number.

This conclusion is not consistent with the prediction of conventional mass

formulas that the neutron binding energies fall off rapidly with increasing mass

number. It was this problem that led Cameron and Elkin (1965) to a re-

evaluation of the mass formula, as discussed in a previous section. Employing



TABLE II

Cross sections (e'v)/VT for neutron capture at kT = 30 keV. The results determined from known
level-density parameters and those determined from the exponential mass formula ere compared

with the experimental values of Macklin and Gibbons (1965). The units are millibarns

Cross section

Cross section a (exponential) from known a(parameters)
Target Experimental from exponential level-density

nucleus cross section mass formula a(experimental) parameters _(experimental)

UFe
66Fe

6rE e
sgCo
hAs
s6Sr
sTSr
88Sr
.IZr
BZr

KZr

.6Zr
UNb
.SMo

10OMo
S_Rh
n*Sn
117511

U8Sn

n.Sn
u0Sn
1.71
lUCs

mLa
141pr
l_Sm
147Sin
14sSm

149Sm
150Sm

15.Sm
luSm
_gTb
l_Ho
le.Tm
XnLu
raTa
I._A u
*o4pb
206pb
*0vpb
S0.Bi
mTh
us U

33.8 38.9 1.15 45.1 1.33
15.1 19.1 1.26 28.0 1.85
61.0 33.7 0.55 56.2 0.921
44 48.6 1.10 45.4 1.03

358 148.5 0.41 336 0.939
75 165.3 2.20

108 324.7 3.00
6.9 26.0 3.77

59 142 2.41 142 2.41
34 48.1 ]. 41
21 23.3 1.11
41 15.7 0.383

277 260.0 0.94 408 1.47
102 42.0 0.41 48.7 0.477
133 44.7 0.34 177 1.33
837 635.1 0.76 623 0.744
104 "278 2.67 263 2.53
418 855 2.05 756 1.81

65 236 3.63 218 3.35
257 486 1.89 631 2.46

41 99.3 2.42
737 783.6 1.06 911 1.24
462 824.5 1.78 761 1.65
45 80.5 ].79
95 365.6 3.85 237 2.49

150 394 2.63
1169 909 0.778 970 0.830
257 199 0.774 183 0.712

1617 864 0.534 1514 0.936
369 176 0.477 186 0.504
410 222 0.541
325 148 0.455

1908 1445 0.76 1309 0.686
1792 1190 0.66, 1204 0.672
1298 1445 1.11 1325 1.02
1623 1874 1.15 1552 0.956

760 1411 1.86 1353 1.78
605 997 ].65 894 1.47
110 62.4 0.57 69.3 0.630

9.6 17.4 1.81 17.1 1.78
8.7 9.25 1.06 12.0 1.381
12.1 8,14 O. 67 7.03 O. 58

521 682 1.31 641 1.23
499 635 1.27 585 1.17
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the shell and pairing corrections of Cameron and Elkin, the level densities can

be determined by the method outlined in Section IV. Thus we can calculate

the neutron-capture cross sections for the uranium isotopes employing the

binding energies predicted by both the conventional form and the exponential

form of the mass formula. The results of these calculations for a temperature

corresponding to kT = 20 keV are displayed in Fig. 11. The velocity by which

the calculated values of (o_) have been divided corresponds to a neutron

energy of 20 keV. In these calculations we have assumed that the total width

is the sum of the neutron width and the radiation width, decay into other

channels being negligible.

Returning to the yield curve, we note that for mass numbers above A = 250

there appears to be a reversal of the odd-even effect. Recently the yields

resulting from the Par and Barbel tests have confirmed the existence of this

effect (Bell 1965; Dorn and Hoff 1965). It has been suggested that this reversal

is the result of the gain or loss of a proton earlier in the capture chain. There-

fore, the neutron-capture cross sections for neptunium and protactinium have

been calculated from the predictions of both mass formulas.

The cross sections for these isotopes exhibit the usual odd-even effect.

Generally we observe that while the cross sections predicted by the conven-

tional mass formula fall off by three or four orders of magnitude between

mass numbers A = 234 and 264, the capture cross sections determined for the

exponential form decrease by roughly a factor of ten. The errors in our numbers
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can be expected to be rather large, but the agreement with the capture cross

section for 23sU from Hughes et al. (1960) is rather good: calculated , _-_ 0.72

barns, experimental, = 0.50 barns. The observed slow decrease in the capture

cross sections determined from the exponential mass-formula parameters is

•consistent with the behavior inferred from the yield curves.

The dip in our capture cross sections corresponding to neutron number 152

must be interpreted with caution. There is a gap in the Nilsson diagram for

deformed nuclei at this point (Mottleson and Nilsson 1958) that predicts this

effect for heavier nuclei on the valley of beta stability. However, as the mass-

formula parameters were fitted to nuclei along the beta stable valley, the

existence of this effect in our calculated cross sections for nuclei in the neutron-

rich region must be interpreted with caution.

Ingley (1965) has recently determined values for the neutron-capture cross

sections for a number of uraniUm isotopes from the results of the Par and

Anacostia experiments. His results are plotted in Fig. 12, together with our

calculated values for the neutron-capture cross sections, for a neutron energy
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of 20 keV. The agreement is seen to be quite good. Furthermore, the same dip

in the capture cross section at _44U is evident in these results, suggesting that

the Nilsson gap at neutron number 152 is present in the heavy uranium nuclei.

As future experiments of this nature may be performed, employing somewhat

heavier target nuclei, we have calculated the cross sections predicted by the

exponential mass-formula parameters for nuclei having 91 < Z < 98 and

N < 186, for a neutron energy of 20 keV. These results are presented in

Table III. We have assumed a spin 5 + for odd-odd nuclei, and 5/2 + for odd-A

nuclei. Ground and first excited states of odd-odd nuclei tend to have a high

spin in one case and a low spin in the other case. Level multiplicity effects on

the capture process tend to favor high-spin states in the photon cascade

process, and there is unlikely to be time for isomeric transitions to a low-spin

ground state on the time scale of an underground multiple neutron-capture

experiment.

These various comparisons between our calculated cross sections and the

experimental data show in general that reaction and capture cross sections in
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medium and heavy nuclei can be calculated using systematic nuclear param-

eters usually to within about a factor of three (the probable error seems to be

about a factor of two). This accuracy is quite sufficient to provide a reliable

basis for studies of thermonuclear reactions at unusually high stellar tem-

peratures. A number of such calculations have been performed, the details of

which will be reported in separate papers.

We wish to thank Drs. D. W. Dorn and J. S. Ingley for communicating to

us the results of their cross-section analysis of the heavy uranium isotopes.

The computer code for the Coulomb wave functions used in these calculations

was developed by Mr. M. Halem and Miss F. Turnheim, to whom we are

indebted.
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ABSTRACT

The transformation of a region composed initially of =ssi to nuclei in the vicinity
of the iron peak, which is thought to take place in the late stages of evolution of
some stars, is considered in detail. In order to follow these nuclear transforma-
tions, a nuclear reaction network is established providing suitable reaction links
connecting neighboring nuclei. A method of solution of the network equations
is outlined. ThermonuClear reaction rates for all neutron, proton, and alpha-
particle reactions involving the nuclei in this network have been determined
from a consideration of the statistical properties of nuclei. The evolution of this
silicon region has been followed in time for two cases: T = 3 X 109 °K, p = 106
g cm -3 and T = 5 X 109 °K, p = l0 Tg cm -3. While both the observed solar and
meteoritic abundances display a broad peak in the vicinity of iron, centered on
"Fe, in these calculations aFe is found to be the most abundant isotope in this
mass range. Beta decays required to change the peak to "Fe are very slow. As
the transformation 2 _85i---_Fe + 2p is endothermic by _-_1.3 MeV, these
results suggest that the silicon-to-iron conversion may not comprise an exothermic
nuclear burning stage of stellar evolution.

I. INTRODUCTION

The details of stellar evolution are quite well established through the hydrogen-

and helium-burning phases (Hayashi et al. 1962). The sequence of nuclear-

burning stages following helium burning is considered to be carbon burning,

oxygen burning, and the buildup of the iron peak from the products of these

reactions by an equilibrium process.

The destruction of 12C can proceed at temperatures T _ 7 X 108 °K by

the reaction 1_C + 1_C (Cameron 1959a; Reeves and Salpeter 1959). At some-

what higher temperatures (T N 109 °K), oxygen burning by 160 + 160 is also

possible (Cameron 1959b; Reeves and Salpeter' 1959). The details of these

reactions are not well determined. Generally the reaction products should be

nuclei with masses in the range 20 -.< A _< 32, particularly the alpha-particle

nuclei 24Mg, 28Si, and 3_S. Of the nuclei in this region, 2sSi has the highest

separation energies for protons and alpha particles. As the temperature is

increased, 2sSi will be the last nucleus to be photodisintegrated, and will there-

fore accumulate. It can be assumed that the material consists mainly of _sSi

after carbon and oxygen burning have taken place, at temperatures T _> 2

X 109 °K.

At temperatures >_ 3 × 109 °K the photodisintegration of silicon will pro-

ceed rapidly, releasing protons, neutrons, and alpha particles. The capture of

_Now at the Lawrence Radiation Laboratory, Berkeley, California.



these light particles on nuclei remaining in this region will result in the buildup

of nuclei to the vicinity of iron. 5eFe is favored in this instance by the fact

that it has the maximum binding energy per nucleon. The iron-peak abundances

observed in nature have usually been attributed to this equilibrium process

(Burbidge et al. 1957). The general features of the iron peak can be reproduced

reasonably well in this manner. The important consideration is whether the

evolution of a presupernova star proceeds too rapidly to allow the silicon-to-

iron conversion. This is a function of the extent to which neutrino energy

losses will accelerate the evolution. From a consideration of the rate of energy

loss by the pair annihilation process

e- + e+--_ + _

Stothers and Chiu (1962) have found the evolutionary time for T = 3 X 109

°K and p = 2 X 108 g cm -s to be only 0.3 year. It is clear that an equilibrium

process proceeding at an appreciably higher temperature is unlikely.

There is, however, another manner in which these iron-peak elements might

be synthesized. The formation of a shock wave in the stellar core may result

from the collapse of the core (Cameron 1963). If the shock is sufficiently ener-

getic, it can propagate outward through the star, heating the medium through

which it passes to temperatures T _> 5 X 109 °K. The characteristics of these

shock waves are currently under investigation (Colgate 1965; Arnett 1965).

At some point in its passage outward through the star, the strength of the

shock may be sufficient to eject the regions above from the stellar gravita-

tional potential. In order to determine whether this ejected material can

contain significant amounts of iron-peak nuclei, we must know both the

initial composition and the temperature-density history of themedium in the

wake of the shock.

Colgate, Grasberger, and White (1961) have followed the dynamical im-

plosion of a presupernova star of 10 solar masses (10Me) through the for-

mation of the shock wave. The mass ejected by the subsequent passage of

the shock outward through the envelope was 1Mo. The temperature and

density of the medium at this point, immediately following the passage of

the shock, were T = 5- X 109 °K and o = 1.3 X 107 g cm -3. The temperature

was found to remain above _5 × 109 °K for approximately 10 -_ seconds,

falling by an order of magnitude in the first second.

We are concerned with the general problem of the production of iron-peak
elements in stellar interiors. We have followed the silicon-to-iron conversion

for two temperatures, 1" = 3 and 5 X 109 °K, corresponding, respectively, to

the conditions predicted for the medium following carbon and oxygen burning

and to those predicted for the medium in the wake of the shock. A nuclear-

reaction network is established, which provides suitable reaction links con-

necting the various nuclei in this region. This subject is discussed in Section V.

Reaction rates were determined as a function of temperature by the methods

discussed in another paper by the authors (Truran et al. 1966) for all proton,

neutron, and alpha-particle reactions involving the selected nuclei, as dis-

cussed in Section I I. In Section I I I, the approximations involved in estimating



the nuclear beta-decayrates are outlined. The general conditions required for

nuclear statistical equilibrium are presented in Section IV.

The results obtained for the evolution of a region composed initially of 28Si

at temperatures T9 = 3 and 5 (/'9 is the temperature in units of 109 °K) are

presented in Section VI. In Section VII, these results will be discussed with

regard to the general problems of nucleosynthesis.

II. THERMONUCLEAR REACTION RATES

The number of reactions per unit volume per second, r, of two nuclear

species with number densities nl and n2 can be written in the form:

(2.1) r = nine(or).

Here (av) is an appropriate average of the product of the reaction cross section,

a(v), and the relative velocity of the nuclei, v,

(2.2) <or) = [f a(v)vN (v)dvl/[f N (v)dvl,

where N(v) is the number density of nuclei having relative velocity v.

The determination of the rates (or) as a function of temperature was con-

sidered in detail in another paper by the authors (Truran et al. 1966). Assuming

that the velocity distributions of the two species are Maxwellian, that the

contribution to the cross section of a single narrow resonance is given by the

Breit-Wigner single-level formula, and that there are many resonances in the

energy range of interest, the total rate for a particle-particle reaction involving

a as the incoming particle and b as the outgoing particle (leaving the residual

nucleus in a definite state) is

2.51 X 10 -13

(2.3) (O"/)>a, b --_- (jff.T9) 3/2

1

(2S_ A- 1)(2I A- 1)

X_ (2J+ 1) _:lEe-Xl'6'tr'p(U,J,f)_F_cm a
-1

sec

In this expression, Et is the threshold energy for the reaction, _ is the reduced

mass in a.m.u., T9 is the temperature in units of 10 9 °K, I'a and r_ are the

particle widths in MeV, r is the total width for the decay of a specified com-

pound nuclear state (taken to be the sum of the proton, neutron, and alpha-

particle widths and the nuclear radiation width), Sa is the spin of the in-

coming particle, I is the spin of the target nucleus, J and x are the spin and

parity, respectively, of the compound nuclear state, and p(U, J, _) is the

level density of states of specified spin and parity at excitation U. The particle

widths, ra and I'b, contain summations over all values of orbital angular

momentum and channel spin consistent with angular momentum and parity

conservation. The corresponding expression for the rate for particle-capture

reactions is given by equation (2.3) with I'b--* r_ (I'7 being the radiation

width for the specified compound nuclear state (U, J, _r)).

The rates employed in Qur network have been determined from these

expressions: for particle-particle reactions, r(a, b) = n_NT(ov)a,b, where NT is
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the number density of the target nuclei, and for particle-capture reactions,

r(a, 3') = naNr(oV)a._. The rates for the inverse reactions can be determined

from the condition of detailed balance. The validity of this condition is assured

by the fact that summations have been performed over all spin orientations.

In equilibrium, the forward and inverse rates will be equal:

(2.4) r(a, b) = naNT(aV>a.b = nbNa(aV)b._ = r(b, a),

where Na is the number density of the residual nuclei. The rate for the in-

verse reaction can therefore be determined from the equations of nuclear

statistical equilibrium:

(2.5) (_>b,a= (_>a,b\ncVR/_...,b.um

= <_>_,_m co.9__r__exp(--O.b/kT),
CObcoR

where /z_ and ]I1 b are the reduce.d masses in the entrance and exit channels,

co,, cob, coT, and coR are the nuclear partition functions

and Q,_ is the energy difference

(2.7) Q_b = (MR + :lib -- iT -- ia)C 2,

where the M's are the masses of the respective nuclei. The analogous expression

for the photodisintegration rate is given by

(°-_')(2.8) x = (o-,,>o,, NR ._u,.b.°._

{2z'k'_ "J/'2 ,/2oJ,_OWexp(_Q/kT) '= (,_v>o,.k-V/ (,or) co--Z

where k is the Boltzmann constant, h is Planck's constant, T is the tempera-

ture, and O is given by

(2.9) Q = (ia- MT -- M,)C 2.

The reaction rates employed in our calculations were determined from these

equations, with the exception of those reactions for which sufficient experi-

mental data were available for the individual resonance parameters. Experi-

mental determinations of the reaction rates were therefore employed for the

following reactions (Truran et al. 1966): 23Na(p,_,)24Mg, _SMg(p, _,)_TAl,

27Al(p ' _,)2sSi ' 30Si(p ' .y)3,p, 2,Mg(a,T)28Si ' 27Al(p ' a)24Mg, and 3'e(p,a)2sSi.

The rate for alpha-particle capture by leO has been determined by Cartledge

et al. (1963) from the experimental results of Kuehner et al. (1961). We have

calculated the _2C(a, 3,)_eO rate from the data of Larson and Spear (1964).

For computing purposes, the reaction rates were fitted to the following

expression:

( )/F_ F3 T 3/2
(2.10) O>r(aV) = exp F_ + _-_i7* + -_9 9 ,

9



where 00T is the partition function of the target nucleus and T9 is the tem-

perature in units of 109 °K. The fitting parameters F1, F,, and F3 are pre-

sented in the Appendix. This fitting form is accurate to a few percent over

a range in temperature 1 -.< T, ..< 9. These errors are small compared to the
uncertainties associated with the calculated values of the reaction rates.

The temperature dependence of the nuclear partition functions has been

considered in our calculations:

(2.11) w(A, Z, T) = 5-_., (2I, + 1) exp(--E,/kT).

When both the energies and the spins are known for the lower levels, the

contributions to the partition function can be computed exactly. At higher

excitations the summation can be evaluated as an integral over energy of

(2I + 1)exp(--E/kT) weighted by the nuclear level density. The resulting

partition functions were fitted as a function of temperature to

(2.12) w(A, Z, T9) = ax + G_T92 + GaT93.

The parameters defining these fits for the nuclei included in our network are

presented in the Appendix. The partition functions computed from this fit

should be accurate to a few percent in the temperature range 1 -.< T9 -.< 6.

We have included the contributions from three additional reactions to the

flows in the reaction network--the triple alpha reaction forming 12C and two

heavy-ion reactions, 12C -71-12C and 160 + 160.

Cartledge et al. (1963) give the following expression for the rate of de-

struction of helium, per helium nucleus, due to the 7.65-MeV resonance level

in 12C:

(2.13) P,, = (px,,) 5.92 X 10 -1° lO-X.s9tr,
T9 3 X •

In this expression x_ is the mass fraction of alpha particles in the medium and

p is the density in gcm -3. The rate should be correct within a factor of two

over the range 0.1 < T9 < 5. The resonance contribution from the 9.63-MeV

level is roughly comparable to that for the 7.65-MeV level, but the uncer-

tainty in this rate is large. Employing equation (2.13), we arrive at the

following expression for the rate of formation of 12C:

a 10-56
n_ 2.53 X 10-x.sg/r, cm-_ sec-1

(2.14) re = _ T9 3

where n_ is the alpha-particle number density. The rate of destruction of

alpha particles is simply 3r,. Assuming that detailed balancing holds, the

rate of photodisintegration of 12C can be determined from the statistical

equilibrium equations to be

(2.15) 9_(12C ---) 31) = 3.67 X 1012 e-ss'sa/r' sec -1

Reeves (1964) has given the following expression for the number of re-

actions per carbon nucleus, P, for the reaction 12C + 1_C from an optical

model analysis of the results of Vogt et al. (1964)"
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(2.16) loglo(P/pxo)= 26.37 36.55(1 - 9,v 07r9)"3
2

-- -- _ logl0T9.

Here Xc is the fraction by mass of carbon. The major products of this reaction

are (_°Ne + a + 4.610 MeV) and (23Na + p + 2.230 MeV) in roughly equal

amounts. The weak endothermic branching to (_3Mg + n) has not been con-

sidered in our computations. Reeves feels this rate is correct within a factor

of three.

For the reaction 160 + lsO, the number of reactions per oxygen nucleus,

P, is given by (Reeves 1964):

(2.17) log_o(P/pxo) = 40.5 -- 59.02 (1 -F 0.14T9) _/3 2
T91/3 -- _ lOgloT9.

Experimental data for this reaction are quite limited. It is probable that

protons and alpha particles have comparable yields, while neutrons have a

somewhat smaller yield. In our computations we have assumed the products

to be equal amounts of (3_p -t- p + 7.676 MeV) and (2sSi -F a -]- 9.593 MeV).

The effects of electron screening on our reaction rates have been considered.

It was found that for typical conditions--T9 N 5, p _ l0 T g cm-3--the rates
^_t. .... ...1 1-... g_^_ .... g I^_ _-L_ _ .... _f"l.. .......... 11 _...*a-L.'_ .,,-1.. .......

i_l,i"_._.. W,._I,LII.t_LII_._i_IL U)" it(_,l.,LIJlo s..#il 1'_.,00 I-IL<lll I. iVl..#. 3_ ll,+,.,...ll., t.LIra.., V¥1_III VVI_IIIII LII_._ i..lllt_l_J.-

tainties associated with our reaction-rate calculations.

The contributions of the excited states to the reaction rates have not been

included. This effect can be important for nuclei with low-lying excited states.

We have compensated in part for the neglect of these contributions by re-

placing the ground-state statistical factor, 21-I- 1, for the target nucleus by

the total partition function. The errors associated with this approximation
were found to be less than a factor of two in the worst cases.

III. BETA-DECAY RATES

The contributions of nuclear beta decays to the flows in the reaction net-

work have been determined. For the beta decays of the ground states of un-

stable nuclei, there is experimental information available in the Nuclear Data

Sheets. At high temperatures, however, the nuclear excited states, populated

according to the Boltzmann factors, may have much greater beta-decay rates

than does the ground state.

In general, the beta-decay rate _, is given by:

(3.1) _, = Xf(Z, E).

The Fermi function, f(Z, E), is a function of the final nuclear charge Z and

the energy available for this transition; it contains the phase space of the

electron (or positron) and the attraction (or repulsion) of the Coulomb field.

The factor X contains the dependence on the nuclear matrix elements; its

order of magnitude is determined by the changes of spin and parity between

the initial and final states. For "allowed" transitions, the dominant transitions

for most nuclei, the selection rules require a spin change of 0 or 1 and no

parity change.



The productf(Z, E)r b where r_ is the half-life for the decay, provides a

convenient characterization of beta decays. For allowed transitions, it has

been found experimentally that values of logl0(f(Z, E)r½) range from ,_4.5

to _-_6. In our calculations a value of logl0(fr) = 5.5 was assumed. The beta-

decay rates can then be determined from

(3.2) X = [In 2f(Z, E)]/(f(Z, E)r½),

where we have taken values of f(Z, E) from the graphs in Ajzenberg-Selove

(1960).

The excited states of beta-decaying nuclei were taken from the Nuclear

Data Sheets. The energies, spins, and parities of both parent and daughter

nuclei are presented in Table I, together with the energy available for the

decay, Q, and the calculated value of the rate, _. In some instances, the posi-

tions of the excited states had to be guessed. For even-even nuclei, the energy

TABLE I

Level energies, spins, and parities for parent and daughter nuclei, energy release, and
beta-decay rates calculated for T = 3 X 10° °K

Parent Daughter

E (keV) J" E (keV) J" Q (keV) X (sec -x)

36C1 1 164 1+ 36A 0 0+ 1 164 2.2X10 -_
nTA 1 420 ½+ 37C1 0 3/2 + 2 234 1.5 X 10 -5
39A ] 520 3/2.-}- SgK 0 3/2.-}- 2 085 3.5X10 -4
41Ca 2 014 (3/2.-}-) _XK 0 3/2.-}- 2 424 3.8X 10-5
44Sc 68 1"}" 44Ca 0 0+ 3 716 2.4X 10 -4

146 (0+) 3 794 2.5X10 -4
44Ti* (1 500) (2+) 44Sc 0 2+ 1 655 7X10 -7

68 l + 1 587 5.5X10 -7
4sV 418 (l+) 4STi 0 0+ 4435 1.2X10 -_
50V* (320) (1 +) s°Cr 0 0+ 1 358 7XI0 -5
'sCr* (1 000) (2 +) '8V 306 (1 +) 2 094 7 X ] 0 -_

416 (2.-}-) ) 984 4.5X10 -5
5xCr 1 167 (5/2-) 5tV 0 7/2-- 1 919 3.5X10 -6
a2Mn 548 1+ 52Cr 0 0+ 5 251 3X10 -*
_3Mn 1 270 5/2- _Cr 0 3/2-- 1 867 2.8X10 -s
UMn* (365) (l +) 54Fe 0 Oat- 1 047 4.5X10 -5
5_Fe* (1 200) (2 +) 5_Mn 383 2 + 3 198 1.5 X 10 -_

548 1 -k- 3 032 1.1 X 10 -4
56Co* (827) (1 +) neFe 0 0--}- 4 592 1.4X 10-z
_Ni* (1 800) (2.-}-) 5sCo 827 (l+) 3 097 1.4X10 -4

*The position of the parent state had to be guessed (see text).

of the first excited state (which presumably has J" = 2 +) was estimated by

comparison with neighboring nuclei. For odd-A or odd-odd nuclei, which

generally have many excited states within a few hundred keV of the ground

state, it was assumed that at least one state should have an allowed beta

decay to the daughter nucleus.

The nuclei 4SSc, 45Ti, 47V, 4°Cr, 5_Mn, 5SFe, and 5sCo are not included in

Table I because their ground states decay by allowed transitions; therefore,

the excited states will add little to the decay rate.

The nuclei 25A1, _gp, 3,C1 ' 37K, and 41Sc are not included in our reaction

network, and must be treated somewhat differently. They are formed by
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(P, 7) reactions proceeding on stable alpha-particle nuclei--24Mg, 2sSi, a2S,

3CA, and 4°Ca. Their proton binding energies are very low (<2.5 MeV), so

that the corresponding photodisintegration times are <10 -s second at

T = 3 X 10 9 °K. We assume that 25A1 is in equilibrium with 24Mg -{- p and

compute the abundance of 25A1 from the equations of equilibrium. The abun-

dances of _gp, 33C1' 37K, and 41Sc can be determined analogously. We can

then calculate the rate of formation of the product nuclei 25Mg, 29Si, 3_S, 37A,

and 41Ca.

Thermonuclear reaction rates, particularly the nuclear photodisintegration

rates, increase rapidly with temperature. In contrast, the beta-decay rates

are not very sensitive to changes in the temperature. We found the beta-

decay contributions at T = 5 )< 109 °K to be negligible. We have, therefore,

incorporated these rates into our relaxation calculation only for the case

T = 3 X 10 9 °K, as given in Table I. Even at this temperature, the influence

of the beta decays on the resulting abundance distributions is minor.

IV. CONDITIONS FOR NUCLEAR STATISTICAL EQUILIBRIUM

At high temperatures and densities thermonuclear reactions will proceed
rznidlv, and an eouilibrium can be established between the various nuclear

species present in the medium. An understanding of this problem is essential

to an understanding of the characteristics of our nuclear reaction network.

Furthermore, we employ the defining equations for the number densities in

equilibrium in our determinations of photodisintegration rates.

We shall now consider briefly the conditions that must be satisfied in order

that nuclear statistical equilibrium may be realized.

(i) The energy of the system must be distributed statistically among the

translational states of the particles. This condition will be satisfied provided

that all types of particles experience many collisions per unit time. This will

restrict us to temperatures above a few billion degrees. For protons at

T9 "_ 4 the collision cross section a _ 10 -16 cm _. The number of collisions per

second is then given by

0rVn _ 10 -16 Vn,

where v and n are the proton velocity and number density, respectively. At

these temperatures v _ 10 9 cm/sec. The densities in which we are interested

are of the order of 10 e g/cc and about one part in 10 n may consist of:protons.

Thus, n _, 10 "3 and the number of collisions per second is approximately

1016. Similarly, for neutrons at this temperature _ _ 10 -24 cm 2 and the num-

ber of collisions per second is _--_108. In either case, the number of collisions is

sufficient to guarantee a Maxwellian distribution over a wide range of energy.

Furthermore, the usual expressions for the thermonuclear reaction rates should

be valid insofar as they depend upon a Maxwellian distribution of velocities.

(ii) Nuclear statistical equilibrium demands that there be equilibrium be-

tween matter and radiation. This is necessary to ensure detailed balancing in

the emission and absorption of radiation. We have employed the condition

of detailed balancing in calculating photonuclear reaction rates. For our con-
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ditions, it is. sufficient to require that equilibrium be established for quanta

with energies large compared to kT. This can be restated as a requirement

that the amount of radiant energy, produced per unit time per unit volume be

large compared to the energy, density in the same frequency range in the

Planck distribution. The main source of high-energy photon emission will be

bremsstrahlung collisions of free electrons and heavy charged particles. The

time required to fill the upper end of the Planck spectrum by this mechanism,

a measure of the time required to attain equilibrium, is roughly 10 -12 second

at T ,-_ 4 X 109 °K (Hoyle 1946). Thus the condition that there be equili-
brium between matter and radiation would seem to be well satisfied.

(iii) There must be suitable nuclear reaction chains connecting all pairs of

nuclei. The reaction rates for each link in the chain must be sufficient to allow

nuclear transformations to take place. The primary sources of neutrons, pro-

tons, and alpha particles are photodisintegrations of the nuclear species that

are present. Our study of the photodisintegration rates suggests that equi-

librium will be reached for temperatures T >_ 3 X 109 °K.

(iv) A condition of equilibrium (or detailed balance) involving weak inter-

actions is not possible, since the mean free path of neutrinos exceeds the

radius of the star and they can escape without interaction. There is, however,

a possible steady-state condition in which the rate of neutrino emission is

equal to the rate of antineutrino emission. We shall take this as our criterion

for nuclear statistical equilibrium with respect to weak interactions.

V. THE NUCLEAR REACTION NETWORK

In our calculations a nuclear-reaction network containing 70 nuclear species

was employed. All proton, neutron, and alpha-particle reaction links were

included. In addition, we have considered the contributions of the reactions

12C + 1_C, 180 + 160, and 3a ,_-12C to the flows in the network.

The basic nuclear reaction network is illustrated in Fig. 1. For mass num-

bers A < 23 only the alpha-particle nuclei, 1_C, 1tO, and 2°Ne, have been

included. Alpha capture is favored on these nuclei; (a, p) and (a, n) reactions

are endothermic by several MeV. Above 2*Mg the choice of the nuclei included

in the network is governed by our knowledge of the thermonuclear reaction

rates.

We shall now establish the equations that define the evolution of our net-

work. The rate of change of the number density, N(A, Z, t), of a particular

nuclear species is given by the rate of formation minus the rate of destruction

for all the reaction links connecting this nucleus to its neighbors:

(5.1) dN(A, Z, t)/dt = N(A + 1, Z, t)ho -- n_(t)N(A, Z, t)(ov)n,v

+ n_(t)N(A, Z + 1, t)(ov)o,p -- n,(t)N(a, Z, t)(ov)t,., + ....

The number densities of neutrons, protons, and alpha particles are denoted

by n_, np, and n_. An expression of this form can be written for each of the

70 nuclear species included in the network and for protons, neutrons, and

alpha particles.
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FIG. 1. Schematic of the nuclear reaction network employed in these calculations. Stable

isotopes are designated by black dots; unstable isotopes by open circles.

A straightforward method of solution of these equations is available. The

rates of change of the various nuclear abundances at time t can be deter-

mined from the number densities according to equation (5.1). The number

densities at time t + A¢ are then given by

(5.2) N(A, Z, t + At) = N(A, Z, t) -_ [dN(A, Z, t)/dt]At.

The number-density changes determined by this procedure are correct to first

order only. This demands that the time intervals At be small compared with

the typical reaction times in the network. A large amount of computing time

would be required to follow the relaxation of the nuclear reaction network

in this manner.

We have been able to increase the time intervals, hence to evolve the net-

work more rapidly, by the use of the following method. We assume that the

rate of change of a nuclear abundance at time t is given by the rate of change
at time t + At:

(5.3) dN(A. Z, t)/dt = [N(A + 1, Z, t) + AN(A + 1, Z)]_,.

- n.(t)[N(A, Z, t) + AN(A, Z)](av)... + ....



72-

We have assumed that the number densities of neutrons, protons, and alpha

particles are given by their values at time t. Writing the derivative in the form

(5.4) dN(A, Z, t)/dt = AN(A, Z)/At,

equations (5.3) become

(5.5) AN(A, Z)[- (1/At) -- nn(t)(av), a -- np(t)(av)p,,, + ...]

-at- 52V(A T 1, Z)X. + n,(t)AN(A, Z + 1)(OV)n,p + (terms in other AN)

= N(A, Z, t)[nn(t)(ov),..r + np(t)(ov)p,, -k- ...] -- N(A + 1, Z, t)Xn + ....

The rates (or) and X are a function only of the temperature. The number

densities r_(t), N(A, Z, t), etc. are known from the previous time interval. If

we choose a value of At, we are left with a system of linear equations that can

be solved by matrix inversion for the number of density changes, AN(A, Z).

The new number densities are determined from the AN by

(5.6) N(A, Z, t -t- At) = N(A, Z, t) -k- AN(A, Z).

The number densities of neutrons, protons, and alpha particles are deter-

mined consistent with baryon conservation,

(5.7) n,(t + At) = nn(t) -k- N(A -k- 1, Z, t + At)X.

-- r_(t)N(A, Z, t + zXt)(av),,,_,

+ np(t)N(A, Z, t + 5t)(ov)p,,,

-- nn(t)N(A, Z -t- 1, t -t- At)(ov)n.p -k- ... ,

where all (n, 7), (p, n), and (a, n) reaction links are to be included.

This approach to the relaxation problem has allowed us to increase the

time intervals typically several orders of magnitude over those demanded by

the first-order method discussed previously. The value of the basic time

interval At is generally a function both of the temperature and of the stage

of evolution of the system. The photodisintegration rates are strongly tem-

perature-sensitive, as is illustrated for _sSi in Fig. 2. If we start with a region

of pure silicon, the allowed time intervals are of the order of 10 -e of the mean

lifetime for the silicon photodisintegrations.

An increase in the total flows in the network implies an increase in the

numbers of neutrons, protons, and alpha particles emitted and absorbed in a

time step. As the rates of emission and absorption of these particles approach

equilibrium, the changes in number density will be computed as small dif-

ferences between large numbers. Fluctuations in the number densities Of these

light particles can rapidly distort the evolution of the system. The following

procedure has been incorporated, in our calculations, to ensure smooth varia-

tions in the number densities of protons, neutrons, and alpha particles.

We denote the total number of alpha particles emitted and absorbed in an

interval by E and A respectively. (Analogous arguments can be employed

for protons and neutrons.) The increase in the alpha-particle number density
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FIG. 2. The photodisintegration rates of *sSi for protons and alpha particles plotted as a
function of temperature. These results have been calculated as a sum over resonances for
which the parameters are known.

in this interval is given by the difference, E -- A. This establishes for this

interval an excess of particles--a reservoir from which we wish to feed alpha

particles smoothly into the system in the succeeding time step. The new

alpha-particle number density is then given by

(6.i) n.(t + At) = [(X(t) -t- E) /a ln=(t),

where the "excess"

(6.2) X(t) = X(t -- At) Jr" E -- A.

This expression demands that the new alpha-particle number density be

sufficient both to maintain equilibrium in the next time interval between the

rates of emission an d absorption of alpha particles and to "absorb" the pre-

viously accumulated excess. It is evident that this approximation will be

reasonable only when the rates of emission and absorption are closely in

balance. If the excess is adjusted as particles are fed into the system, this

procedure is strictly baryon-conserving.

Proceeding in the manner described above, we were able to follow the time

evolution of the network. Attempts to extrapolate the number densities over

long time intervals, based on the observed behavior of the system, were not

successful. This was due to the difficulties associated with extrapolations of

proton, neutron, and alpha-particle number densities. Slight errors in the

extrapolated values were fotind to result in pronounced oscillations of the

system, rendering the subsequent evolution untrustworthy.
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VI. THE APPROACH TO EQUILIBRIUM

Assuming that the carbon- and oxygen-burning stages have gone to com-

pletion, the products 24Mg, _sSi, and 32S should be the main components of

the stellar core. _sSi, having the largest separation energies for protons and

alpha particles, is expected to be the major constituent of the medium for

temperatures T _-_ 2-3 X 10 9 °K. A further increase in the temperature will

result in the photodisintegration of 2sSi into protons and alpha particles. These

photodisintegration rates are plotted as a function of temperature in Fig.

2 (a)and (b).

Employing the nuclear reaction network defined in Section V, we have

followed the thermonuclear processing of a region composed initially of pure

2ssi at temperatures T = 3 and 5 X 10 9 °K. The early stages of this evolu-

tion at T9 = 5 are displayed in Fig. 3. The photodisintegration of silicon to

alpha particles results in a rapid buildup of the products _Mg, 2°Ne, and

leO. The subsequent capture of alpha particles on silicon in these early stages

leads to a rapid rise in the abundance of 32S. 12C increases slowly in abundance
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FZG. 3. The early stages of evolution of a region composed initially of pure 2sSi at a tem-
perature TI = 5.
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because of the relatively low value of the rate for 160("/, og)12C. As the rate of

photodisintegration of silicon to protons is roughly an order of magnitude

lower than the alpha-particle photodisintegration rate, the products 27AI and

23Na are produced in somewhat lower abundance. The alpha-particle nuclei

are generally the most abundant products in their respective mass ranges

through 4°Ca.

Figures 4 and 5 show the late stages of evolution of this silicon region. As

the alpha-chain nuclei come into relative equilibrium with silicon, their

abundances tend to decrease at a rate comparable with the rate of decrease

of silicon. Our calculations were carried to the point at which computer

X"
'E
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28
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' I ' I ' I ' I ' I i

28
Si

IO 24 24Mg

23
I0
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0 4 8 12 16 20 24
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FIG. 4. The evolution of a region composed initially of pure 2sSi at a temperature T_ =3.

round-off errors rendered further results unreliable at about the 1% level of

uncertainty. In both cases, the time scales of decrease of 28Si are considerably

longer than the nuclear photodisintegration times (X-1 _ 1.4 X 10 -_, T9 = 5;

;_-x_3 X l0 s , T9 = 3).

The buildup of 24Mg and 27A1 towards an effective equilibrium with 28Si

results in a decrease in the net rate of destruction of silicon. That is, as the
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rate of _4Mg(m _,)2sSi becomes comparable with that of 2sSi(_,, a)_4Mg, the

net flow from silicon to 2*Mg will decrease. A measure of the effective rate

of destruction of silicon is the ratio of the net flow down the chain from silicon

to the total photodisintegration rate of silicon to form protons and alpha

particles. These ratios are plotted in Figs. 6 and 7 as a function of the fraction

of the initial silicon remaining in the medium.

The ratio of the net flow to the total photodisintegration rate is seen to

decrease as the abundance of silicon decreases in time. This is a measure of

the degree to which the forward and inverse reaction rates have come into

equilibrium. The smoothness of this curve suggests that we might predict

roughly the future behavior of the relaxation by an extrapolation of this

dependence.

The dominant flows in the network are shown in Fig. 8. These flows gener-

ally support the arguments presented in this section. The net flow down the

chain from ssSi to alpha particles is evident in this picture. The flow from

1'C to alpha particles proceeds very slowly, owing to the slow rate of the
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12C (7, 3a) reaction. An equilibrium between 12C and a particles is not estab-

lished on the time scale of this relaxation. Above 28Si the alpha-particle links

contribute appreciably to the evolution through 3CA. Beyond this point (a,p),

(p, 7), and (p, n) reactions carry the major flow toward the iron region.

The abundance distributions as a function of mass number at the end of

our relaxation calculations are shown in Figs. 9 and 10. The general features

of these distributions can be understood in terms of the nuclear-reaction-rate

properties. The high abundances of protons and alpha particles at_T = 5

X 10 9 °K are the result of the rapid photodisintegration rates at these tem-

peratures. This has resulted, as well, in relatively larger abundances of the

alpha-particle nuclei below silicon. The break in the alpha-particle chain past

4°Ca, resulting in the production of the a + 2n nuclei 46Ti, 5°Cr, and S*Fe, is

evident in both distributions. However, the strong peaking at these mass

numbers (A = 46, 50, and 54) at 3 X 109 °K is not apparent at 5 X 109 °K,

because of the fact that at the higher temperatures many more reaction links

are providing significant contributions to the flows.
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VII. DISCUSSION OF RESULTS AND CONCLUSIONS

The results of these calculations have important implications regarding

nucleosynthesis.

1. The governing rate for the silicon-to-iron conversion is the effective loss

rate of _aSi. This means that the time required for the silicon-to-iron con-

version is not a sensitive function of the density. The buildup of nuclei in the

vicinity of 28Si results in the establishment of flows in opposition to the down-

ward flows from silicon. As these abundances approach an equilibrium, the

net flows out of _aSi will decrease; hence the net rate of depletion of _sSi will
decrease. The ratios of the net flow downward from _sSi to the total _ssi

photodisintegration rate (the sum of the proton and alpha-particle photo-

disintegration rates) are shown in Figs. 6 and 7 for the temperatures T9 = 3

and 5, respectively.
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These figures differ somewhat because of the different character of the flows
at the two temperatures. A reasonable generalization of these two cases might

be that over a rather large-range in the silicon abundance this ratio is typically

10 -3 to 10 -2. This means that the time required for the _ssi abundance to

decrease to one half its initial value is roughly 100 to 1 000 times the photo-
disintegration half-life. This should allow a crude estimate of the time scale

for the conversion of _sSi to iron at a different temperature. The total 28Si

photodisintegration rate, taken to be the sum of the rates for (_, p) and
('r, a) reactions, follows directly from the fitted values of (or) given in the

Appendix and the equations of nuclear statistical equilibrium:

(7.1) X = Xp+ X,,

( 7.85 139.45'_= 1.13 X 101° exp 18.18 -- -_-_7_9 T9 /

( 21.77 121.73'_ _1+ 7.54 X 101° exp 21.68 -- --_-7_- -- _ / sec
z9
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2. Above 4°Ca, the most abundant nuclei (*eTi, 5°Cr, 5_Fe) do not have

equal numbers of neutrons and protons. This is not because of beta decay;

such processes are quite inflective, simply because beta-unstable nuclei do not

build up to high enough abundances during the time scale of the relaxations

considered here. It is, rather, a question of which reactions are energetically
favorable.
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Fowler and Hoyle (1964) have suggested a crude model in which _sSi photo-

disintegrates by (7, a) and captures the a particles to build nuclei with N = Z

up to SeNi. The present results suggest that this model is unrealistic; for in-

stance, at T9 = 3, 5*Fe is more abundant than any other nucleus with A > 52

by about two orders of-magnitude. This becomes even clearer when the actual

reaction rates across the various links in the network are considered, as has

been illustrated in the diagram of the net flows (Fig. 8). Above 4°Ca it was

found that the alpha-particle links did not carry the major flows. This can

be explained by the rapid decrease of alpha penetrabilities with Z, at a given

energy.

3. 5*Fe is the most abundant nucleus produced in the iron region. In the

virtual absence of beta decays, this means that the overall reaction is not

22ssi --+ 5eNi, which releases about 10 MeV per reaction, but 2_sSi --_ 54Fe + 2p,



which is actually endoenergetic by 1.3 MeV. The implication is that there is

no exoenergetic reaction phase; nuclear reactions involved in the approach

to equilibrium do not slow down the collapse of a star brought on by neutrino

emission. The exact energy release depends somewhat on the composition of

the material in the iron region, but if 5*Fe is the most abundant nucleus, the

Si-Fe conversion can not be exothermic by much, if at all, and beta decays

will not help the situation. It is true that if an electron or a positron is emitted

it carries some of the energy release of the beta decay. However, there is also

electron capture, which becomes important at high density. In fact, even

normally stable nuclei can capture electrons when the electron Fermi energy

becomes high. Fowler and Hoyle (1964) give a half-life of 4 X 104 seconds

for electron capture at a temperature of 3.8 X 109 °K and a density of 3.1 X 10 e

g cm -3. In this kind of reaction, the entire energy release goes into neutrinos.

4. It is evident that the iron peak observed in nature, centered on 5eFe,

cannot result from our calculations. However, the transformation of protons

to neutrons at an early stage of this relaxation would result in the production

of increased amounts of neutron-rich isotopes of the elements in the iron

region.

Chiu (1965) has studied the presupernova stage of the evolution of a star

in some detail. He finds that such stars will evolve to a high central density

(0 _'_ 109-1° gcm -3) at a central temperature T _-_ 3-4 X 109 °K. At these

densities, electron capture on nuclei will proceed rapidly. In particular, the

electron capture rates for 3_S and 3_p are > 10 -1 sec -1. In times of the order

of 100 seconds, an appreciable amount of 32S can be converted through 3_p

to 3_Si. The processing of a region composed of *sSi and a substantial amount

of 3_Si by a shock wave of peak temperature N5 X 109 °K might result in

the formation of an iron-abundance peak centered on 5eFe.

5. The relaxation at 5 X 109 °K resulted in the production of large amounts

of iron-peak nuclei (>_20% bv mass) in N10 -* second. This is approximately

the time for which the post-shock-wave temperature predicted by the model

of Colgate et al. (1961) will remain _5 >( 10 a °K. It is evident, therefore,

that significant amounts of iron can be produced by the passage of the shock

through a silicon region. A more detailed consideration of element formation

in supernova shock waves will be presented in a future paper.

6. We were not able to follow the approach to equilibrium through its final

stages in these calculations because of the accumulation of computer round-off

errors. Several attempts were made, with little success, to extrapolate forward

over long time intervals. The observation that 12C is far out of equilibrium

with respect to alpha particles, owing to the slow rate for the reaction 1_C --_ 3a,

provides a clue to what might perhaps be a better means of extrapolation.

In general, the abundance of a given nuclear species, i, in equilibrium is

related to the number densities of free protons and neutrons by an equation
of the form

<7.2) z,) =



$3

where A_ is the mass number, Zt is the proton number, nn and np are the

free neutron and proton number densities, and f_(T) is a function of tem-

perature alone for a specified nuclear species. In our calculations, an equili-

brium between 1_C and alpha particles is not established on the time scale

of the relaxations. However, the reactions involving the other nuclear con-

stituents proceed rapidly, and the abundances of these nuclei should be in

equilibrium with respect to the abundances of carbon, protons, and neutrons.
For each of the 69 nuclei other than carbon we can then write the abundance

in the form:

(7.3) N,(A ,, Z,) = N(l'C)n.A-z- n,z-6f ,(Y).

The alpha-particle number density corresponds to equilibrium with neutrons

and protons and is given by

(7.4) na = npSrtn2fa(Y).

There are two further conditions to be imposed: mass conservation

(7.5) n. + n, -k- 4n, + 12N(_2C) +Z,A_N,(A,, Z,) = Noo,

where No is Avogadro's number and p is the density, and the equality of the

total numbers of protons and neutrons (demanded by an initial configura-

tion of pure 'sSi in the absence of beta decays)

(7.6) np +]_,Z,N,(A,,Z,) = nn+__,, (At -- Z,)N,(A,, Z,).

For a given temperature and density, equations (7.3), (7.4), (7.5), and

(7.6) constitute 72 equations in 73 unknowns (n,, np, n_, the 69 N,(At, Z,),

and N(12C)). These equations can be solved numerically for a specified value

of N(I2C). Assuming that the abundance of carbon varies smoothly in time,

we can correlate the abundances determined in this manner, for an extra-

polated 28Si abundance, with the time, and follow the relaxation through to

completion.

APPENDIX

For convenience in computing, both the reaction rates and the nuclear

partition functions have been fitted to simple analytic expressions. The

reaction rates are given as a function of temperature by

(_0T(OV) = exp F1 + _iTg + _9 ,
9

where oJ-r is the nuclear partition function of the target nucleus and T9 is

the temperature in units of 109°K. The fitting parameters FI, F2, and F3

are presented in Table A.I together with the reaction Q value in MeV. This

fitting form is accurate to a few percent over a range in temperature

1<T9<9.



"FABLE A.I

Reaction-rate fitting parameters

Target Z, A Reaction FI F'2 F3 Q

6 12 (_,_) 28.886 --44.288 2.685 7.148
8 16 (_,_) 19.130 --29.163 5.266 4.730

10 20 (a, p) 20.800 --6.235 --32.278 --2.379
10 20 (a,_) 20.949 --14.920 --10.388 9.314

11 23 (p,y) 20.615 --12.223 --1.465 11.693
11 23 (a,p) 35.117 --31.057 --8.606 1.826
11 23 (a,y) 26.452 --24.313 --10.081 10.098

12 24 (n,y) 22.756 --13.717 2.219 7.331
12 24 (a,p) 25.140 --12.250 --25.717 -- 1.595
12 24 (a,_) 2].678 --21.768 --5.992 9.986
12 25 (n,_) 23.386 --11.347 2.266 11.101
12 25 (a, n) 36.293 --33.427 --8.869 2.655
12 25 (_, _) 32.173 --38.069 --5.862 11.133
12 26 (p,_) 24.917 --19.473 4.189 8.272
12 26 (_,n) 36.448 --36.189 --8.(_)8 0.036
12 26 (a,_) 31.857 --41.370 --4.561 10.646

13 27 (p,_) 18.887 --7.846 --4.991 11.581
13 27 (a,p) 35.852 --33.833 --9.887 2.378
13 27 (_,_) 29.939 --31.511 --10.038 9.664

14 28 (n,_) 22.950 --13.639 2.215 8.478
14 28 (a, p) 24.302 --11.015 --31.673 -- 1.917
14 28 (_,_) 22.272 --19.278 --14.563 6.946
14 29 (n,_) 23.364 --12.410 1.659 10.610
14 29 (a, n) 36.965 --37.339 --10.903 -- 1.532
14 29 (a, _) 33.244 --43.245 --1.821 7.110
14 31) (p,_) 20.559 --12.761 --1.038 7.286
14 30 (a,n) 31.606 --21.709 --34.279 --3.504
14 31) (a,_) 21.324 --15.280 --17.490 7.917

15 31 (p,_) 22.786 --14.760 -- 1.653 8.862
15 31 (a,p) 38.135 --41).580 --10.081) 1).631
15 31 (a,_) 33.391 --43.095 --7.331 6.998

16 32 (n,_) 23.606 --13.395 3.308 8.642
16 32 (_,p) 37.300 --39.335 --16.679 -- 1.866
16 32 (_,_) 22.241 --23.386 -- 13.904 6.640
16 33 (n,_) 23.949 --11.983 2.657 11.421
16 33 (a,p) 37.696 --37.433 --21.051 --1.931
16 33 (a,n) 36.823 --37.591 -- 14.891 --2.002
16 33 (_,_) 28.291 --31.839 -- 10.221 6.792
16 34 (p,_) 24.324 --18.557 --I).554 6.367
16 34 (a,p) 32.231 --27.244 --34.693 --3.1)30
16 34 (a,n) 29.874 --16.699 --50.131 --4.628
16 34 (_,_) 23.172 --20.148 -- 17.953 7.213

17 35 (n,_) 26.931 --16.562 5.266 8.577
17 35 (p,_) 23.349 --15.318 -- 1.982 8.506
17 35 (a,p) 38.159 --41.075 --12.437 0.846
17 35 (_,_) 30.977 --35.694 --13.1)02 7.213
17 36 (n,_) 25.22I --13.187 2.818 10.322
17 36 (p,n) 33.513 --23.284 --2.692 --I).071
17 36 (p,_) 26.018 --20.281 --1.564 8.723
17 36 (a,p) 40.911 --46.569 -- 14.562 --1.146
17 36 (a,n) 40.807 --45.855 --10.006 -- 1.364
17 36 (a,_) 42.160 --63.784 3.176 6.434
17 37 (p, n) 31.944 -- 16.718 -- 15.134 --1.598
17 37 (p,_) 22.502 --12.255 --4.366 10.243
17 37 (a,p) 35.538 --35.967 -- 18.691 -- 1.592
17 37 (a,n) 34.406 --26.755 --36.964 --3.888
17 37 (a,_) 25.812 --22.913 --18.090 6.208

18 36 (n,_) 22.028 -- 10.574 0.671 8.794
18 36 (_,p) 41).161 --47.669 --11.874 -- 1.292



TABLEA.I continued)

Target Z, A Reaction FI F2 F3 Q

18 36 (a, -y) 35.519
18 37 (n, "r) 24.340
18 37 (a, p) 39.315
18 37 (a, n) 39.388
18 37 (a, -)') 34.996
18 38 (n, 7) 24.426
18 38 (P, "r) 25.160
18 38 (a, p) 33.658
18 38 (a, n) 30.354
18 38 (,_, "r) 26.852
18 39 (n, "r) 26.324
18 39 (p, n) 35.38]
18 39 (P, "r) 28.662
18 39 (a, n) 39.819
18 39 (a, "r) 39.104
18 40 (p, n) 30.660
18 40 (P, "r) 23.572
18 40 (a, n) 37.875
18 40 (_, 7) 30.801

19 39 (n, _/) 24.944
19 39 (P, 7) 23.903
19 39 (a, p) 39.951

19 40 (n,'--""_) 26.-....152
19 40 (p, n) 33.851
19 40 (P, 7) 27.221
19 40 (_, p) 43.114
19 40 (a, n) 38.698
19 40 (a, _) 45.510
19 41 (p, n) 33.891
19 41 (p, q,) 26.249
19 41 (a, p) 40.615
19 41 (a, n) 37.310
19 41 (a, v) 42.878

20 40 (n, "r) 24.209
20 40 (a, p) 34.860
20 40 (a, _,) 28.423
20 41 (n, _r) 26.657
20 41 (a, p) 38.687
20 41 (a, n) 36.919
20 41 (a, 7) 34.206
20 42 (n, _,) 27.332
20 42 (p, _,) 26.893
20 42 (a, p) 35.214
20 42 (a, n) 31.452
20 42 (a, "r) 32.546
20 43 (n, "r) 27.196
20 43 (p, n) 31.610
20 43 (p, _,) 27.586
20 43 (a, p) 40.984
20 43 (a, n) 41. 189
20 43 (a, "r) 43.166
20 44 (n, "y) 27.479
20 44 (p, n) 30.025
20 44 (p, _,) 28.944
20 44 (a, p) 40.085
20 44 (a, n) 40.829
20 44 (_, _) 46.458
20 45 (n, _,) 28.420
20 45 (p, n) 36.58]
20 45 (p, "r) 36.711
20 45 (_, n) 41.454

--56.702
--13.007
--42.138
--44.208
--47.394
--16.749
--19.954
--30.385
--16.868
--26.238
--15171
--26 ] 14
--24 400
--44700
--49 648
--17 806
--14 025
--42 880
--35 946

--13.425
--16.507
--46.127

--13.710
--25.340
--19.251
--53.061
--39.595
--67.030
--23.189
--18.540
--50.470
--35.844
--58.180

--13.535
--32.672
--30.598
-- 13.633
--40.708
--38.493
--38.990
--18.498
--23.329
--36.768
--22.557
--38.083
--14.004
--12.707
--17.265
--45.638
--49.292
--58.931
--19.555
--11.635
--23.210
--49.242
--50.019
--72.229
--16.389
--28.348
--39.666
--48.636

• 2.335
2.195

--22.793
--12.751

--5.377
3.637

--0.944
--45.966
--56.559
--18.897

3.897
--1.995

0.741
--12.053

--8.727
--22.305

--4.718
--16.799
--13.065

3.828
--2.292

--12.716
__11 JnHf_A

3.385
--2.328
--2.324
--8.162

--23.649
O.955

--8.514
--2.642
--8.941

--28.683
--4.525

3.385
--40.935
--19.478

2.737
--24.913
--25.183
-- 14.782

5.682
--0.366

--28.873
--53.207
--16.013

3.443
--33.277

--4.407
--19.867
--11.683

--5.006
4.908

--49.970
--1.951

--24.342
--13.346

3.870
3.727

--2.143
5.215

--12.316

7.044
11.841

--2.289
--1.750

6.610
6.585
6.367

--4.035
--5.231

6.241
9.875

--0.218
7.580

--0.344
7.586

--2.296
7.800

--2.289
8.847

7.798
8.336

--0.126
A Q_I

]0.096
0.539
8.899
0.006

--2.997
6.711

--1.196
10.276

1.047
--3.384

7.936

8.360
--3.535

5.235
11.472

--2.188
--3.126

6.290
7.930
4.927

--2.341
--5.182

8.008
11.136

--3.003
6.705

--1.504
0.079
8.966
7.420

--4.431
6.889

--1.993
--2.170

9.450
10.400

--0.531
8.236
2.030



TABLE A.I(continued)

Target Z, A Reaction F1 F2 F3 Q

20 45
20 46
20 46
20 46
20 46

21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21

22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22

43
43
43
43
44
44
44
44
44
44
45
45
45
45
45
45
46
46
46
46
46
46
47
47
47
47
47

44
44
44
45
45
45
45
46
46
46
46
46
47
47
47
47

47
47
48
48
48
48

48
48
49
49
49
49
49
5O
5O

(a, 3") 44.420 --59.274
(p, n) 32.571 --22.435
(p, 3") 28.293 --19.825
(a,n) 41.549 --51.914
(a, 3") 44.731 --65.673

(n, 3") 28.573 --15.579
(p, 3") 28.466 --20.224
(a, p) 41.136 --48.967
(a, 3") 42.903 --54.515
(n, 3") 29.930 --16.414
(p, n) 33.918 --24.704
(p, 3") 29.170 --22.507
(a, p) 43.482 --54.142
(a, n) 43.303 --53.835
(a, 3") 47.289 --66.163
(n, 3") 28.042 --14.061
(p, n) 31.873 --13.952
(p, 3") 28.999 --17.889
(a,p) 42.956 --56.445
(a, n) 43.206 --51.564
(a, 3") 48.971 --71.721
(n, 3") 29.573 --15.399
(p, n) 34.499 --26.056
(P, 3') 31.758 --23.904
(a, p) 43.330 --54.256
(a, n) 43.431 --53.413
(a, 3") 47.333 --65.657
(p, n) 36.643 --28.850
(p, 3") 36.540 --37.522
(a,p) 42.722 --52.655
(a, n) 43.594 --53.878
(a, 3") 46.519 --63.375

(n, 3") 25.334 --13.268
(a,p) 41.414 --53.304
(a, 3") 42.985 --66.003
(n, 3") 29.571 --15.346
(a,p) 44.584 --56.112
(a, n) 42.854 --55.564
(a,3") 48.078 --69.704
(n, 3") 27.295 --16.193
(p, 3") 30.080 --27.226

(a'(a,P_ 34.90641"293 _33.--54"793090

(a, 3") 39.990 --58.221
(n, 3") 28.494 --14.579
(p,n) 31.841 --13.694
(P, 3') 30.070 --20.843
(a, p) 43.863 --56.021
(a, n) 42.571 --52.910
(_, 3") 46.689 --65.894
(n, 3") 27.585 --17.711
(p, n) 30.698 --14.745
(p, 3") 29.909 --24.772
(,_, p) 43.512 --59.574
(a,n) 46.895 --50.971
(a, 3") 45.627 --71.632
(n, 3") 28.187 --15.201
(p,n) 35.150 --24.503
(p, 3") 32.025 --28.344
(a,n) 41.977 --50.744
(a, 3") 43.400 --57.467
(p, n) 32.579 --16.856
(p, 3") 30.736 --21.622

--6.643
--18.944

--4.454
--10.994

--4.857

3.035
--3.286

--13.660
--10.840

3.654
--5.844
--2.039

--10.848
--11.796

--6.007
3.960

--29.380
--5.749
--8.536

--14.174
0.450
4.897

--3.303
--3.317

--11.834
--11.244

--7.068
--2.347

3.532
--11.609
--11.630

--7.076

3.131
--13.537

--2.615
4.398

--11.421
--12.128

--3.986
3.236

--0.462
--14.195
--39.787

--6.606
4.464

--40.058
--4.516

--13.494
--12.905

--5.159
3.995

--53.345
--2.526

--12.582
--17.189

1.257
3.400

--8.837
1.084

--13.913
--10.545
--29.983

--4.430

10.177
--2.165

8,482
--0.223
10.720

9.708
8.770
3.082
8.274

11.320
--0.938

8.478
2.260

--1.435
9.081
8.767

--2.841
10.349
2.561

--2.239
9.314

10.647
1.583

10.470
1.942
0.548
9.885

--0.177
11.443
2.232

--0.763
10.276

9.416
--0.497

7.840
13.190

0.602
--1.578

8.812
8.887
5.192

--1.035
--4.378

8.556
11.620

--3.695
6.821

--0.585
--0.330

8.919
8.147

--4.800
6.753

--1.166
--2.701

9.350
10.943

--1.394
7.943
1.203
9.146

--2.995
8.044
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TABLEA.I (continued)

Target

22
22
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

Z, A

50
50

47
47
47
47
48
48
48
48
48
48
49
49
49
49
49
49
50
50
50
50
5O
50
51
51
51
51
51

48
48
48
49
49
49
49
50
50
50
50
50
51
51
51
51
51
51
52
52
52
52
52
52
53
53
53
53
53
54
54
54
54

Reaction F1 F2 F3

(a, n) 42.779 --55.509 --1] .880
(a, "r) 48. 539 - 77. 661 1.879

(n, _,) 30. 030 - 16. 588 4. 432
(P, "r) 29.438 --21.618 --4.114
(a, p) 42.673 -- 53. 592 -- 13.834
(_, _) 44.452 -- 59. 824 -- 10. 916
(n, -y) 29. 657 -- 14. 509 2. 750
(p, n) 33.447 --24. 253 -- 18.726
(p, .y) 30. 525 --21. 914 --4.431
(a, p) 44. 890 -- 58. 384 -- 11.069
(a, n) 44.499 -- 57. 414 -- 12. 774
(a, "_) 48. 046 -- 70. 502 -- 5.975
(n, _,) 28. 706 -- 14.222 4. 286
(p, n) 32. 021 -- 14. 589 --35. 031
(p, 3,) 29. 287 -- 19. 270 -- 5.919
(a, p) 43. 186 -- 55.981 -- 11. 859
(a, n) 42. 924 --51. 781 -- 19. 256
(a, _) 47. 342 --69. 300 --3. 337
(n, 3,) 29. 696 -- 17. 184 5. 541
(p, n) 35.606 --32.706 --2.936
(p, _,) 31. 800 --24.409 --3. 577
(a, o) 45.351 -63. 162 --12. 135
(a, n) 44.925 --58.491 --11.491
(a, "r) 48.441 --71.816 --6.621
(p, n) 34.774 -- 23.454 -- 11.296
(p, 3,) 29.372 --22.816 --2.398
(a, p) 44. 542 --62. 581 -- 10.016
(a, n) 44. 353 --55. 170 --14. 165
(a, _) 51.171 --76.958 O. 924

(n, _() 27. 790 -- 15. 920 4. 806
(a, p) 43. 285 --58. 536 -- 12. 741
(a, 31) 45.248 --73.749 --2.209
(n,.y) 29,186 --15.4_1 4.564
(a, p) 45.617 --60.899 --11.538
(a, n) 42.479 -- 53. 543 -- 18. 036
(a, 3,) 47. 535 --72. 149 --2.254
(n, "y) 28. 584 -- 17. 941 5. 222
(p, ,y) 29. 906 --27. 910 --0.852
(a, p) 42. 138 -- 56. 484 -- 14.241
(a, n) 33.871 -- 30.946 -- 51.649
(a, "y) 42. 988 --66. 723 --4. 712
(n, "),) 27.960 --12.910 3. 101
(p, n) 31.954 -- 13.980 --42. 545
(p, ,y) 29.320 -- 20.488 -- 5.389
(a, p) 44. 695 --56. 943 -- 15. 820
(a, n) 43. 710 --57. 640 -- 12. 381
(a,3,) 46.093 --67.512 --5.421
(n, 3") 27.576 -- 17. 891 4. 094
(p, n) 31. 332 -- 19. 023 --59. 055
(p, ,y) 30.121 -- 26. 832 -- 1.980
(or, p) 42.240 -- 55.659 -- 25.646
(a, n) 39. 768 --48. 054 --25. 145
(a, 3,) 47. 172 -- 76. 324 1.429
(n, -y) 28.527 -- 17. 292 5.744
(p, n) 35.312 --27.081 --8.298
(p, _,) 29.750 --25. 077 -- 1.853
(a, n) 43. 347 -- 55. 635 -- 14.048
(or, _,) 47.297 --68.922 --7. 583
(p, n) 32.002 -- 20. 648 -- 19. 662
(p, -y) 27. 220 -- 19. 152 --6. 563
(or, n) 42.648 -- 56. 067 -- 15.293
(or, -_) 50.630 --81.361 2.613

Q

-- 1.792
7.930

io.51_
8.337
3.360
8.650

!1.553
--2.180

8.210
2.098

--1.862
8.663
9.337

--3.343
9.591
2.597

--2.889
9.160

11.039
O. 255
9.504
1 _OR

--0.177
8.763

--1.535
10.516

--0.115
--2.276

7.943

10.390
0.320
7.680

12.934
O. 454

--2.711
7. 729
9.249
5.290

--0.432
--5.206

8.414
12.051

--3.960
6.565

--0.741
--0.836

8.464
7.943

--5.486
6.563

--2.572
--3.586

7.624
9.722

--1.380
7.560

--0.319
7.322

--2.161
8.O58

--2.400
7.648



TABLE A.I (continued)

Target Z, A Reaction F1 F2 F3 Q

25 51 (n, _) 29.357 --16.367 4.807 10.525
25 51 (p, _) 27.794 ,20.724 --4.680 7.360
25 51 (a, p) 44.010 --57.346 --14.423 3.130
25 51 (a, _) 43.601 --60.899 --12.333 8.187
25 52 (n, _) 29.147 --15.290 3.929 12.049
25 52 (p, n) 33.460 --26.583 --29.723 --3.165
25 52 (p, _) 29.527 --23.421 --3.718 7.275
25 52 (a, p) 47.865 --70.201 --6.907 1.899
25 52 (a, n) 45.601 --61.088 --13.530 --2.344
25 52 (a, _) 50.325 --81.042 0.532 7.757
25 53 (n, _) 28.150 --14.433 4.590 8.940
25 53 (p, n) 31.701 --12.087 --54.129 --4.774
25 53 (p,_) 29.191 --20.487 --5.868 8.846
25 53 (a, p) 44.395 --61.660 --10.6{3 1.061
25 53 (a, n) 39.975 --42.914 --34.548 --4.292
25 53 (a, _) 47.521 --73.829 --1.681 7.055
25 54 (n, _) 30.082 --16.128 4.272 10.219
25 54 (p, n) 36.003 --29.972 --3.791 --0.095
25 54 (p,_) 32.111 --26.635 --3.474 9.205
25 54 (a, p) 45.723 --64.479 --12.343 --0.238
25 54 (a, n) 46.157 --61.025 --12.586 --1.885
25 54 (a,_) 5}.448 --80.605 --1.166 6.721
25 55 (p, n) 36.835 --30.501 --4.543 --1.014
25 55 (p, _) 35.209 --35.834 2.734 10.196
25 55 (a, p) 45.839 --66.679 --9.124 --0.410
25 55 (a, n) 41.982 --49.861 --24.988 --3.498
25 55 (a, _) 50.409 --75.130 --2.771 6.956

26 52 (n, _) 27.563 --16.016 4.739 10.440
26 52 (a, p) 44.224 --62.475 --12.721 0.822
26 52 (a, _) 43.673 --73.095 --5.205 8.085
26 53 (n, _) 29.508 --16.027 3.137 13.620
26 53 (a, p) 47.160 --63.992 --12.138 0.486
26 53 (a, n) 44.876 --61.806 --14.857 --2.420
26 53 (a, _) 48.865 --78.009 --3.132 7.815
26 54 (n, _) 26.814 --14.734 2.857 9.300
26 54 (p, _) 28.619 --26.215 --2.470 5.057
26 54 (a, p) 41.443 --55.124 --21.299 --1.791
26 54 (a, n) 32.173 --26.468 --59.767 --5.808
26 54 (a, _) 35.537 --52.911 --13.483 6.411
26 55 (n, _) 28.631 --15.690 4.893 11.210
26 55 (p, n) 31.468 --13.731 --46.759 --4.243
26 55 (p, _) 28.125 "20.648 --5.963 5.858
26 55 (a, p) 42.834 --53.191 --30.095 --2.484
26 55 (a, n) 42.583 --54.923 --19.389 --2.889
26 55 (a, _) 45.705 --68.924 --6.326 _.112
26 56 (n, _) 28.643 --19.434 5.901 7.641
26 56 (p, n) 30.842 --]5.056 --58.234 --5.353
26 56 (p, _) 29.343 --26.214 --3.051 5.994
26 56 (a, p) 40.398 --51.186 --34.208 --3.240
26 56 (a, n) 34.875 --34.176 --47.394 --5.099
26 56 (a,_) 33.967 --45.972 --18.730 6.290
26 57 (n, _) 29.791 --18.991 4.633 10.048
26 57 (p, n) 34.425 --26.639 --11.855 --1.647
26 57 (p, _) 28.054 --22.225 --4.893 6.959
26 57 (a, n) 44.592 --60.767 --13.926 --1.351
26 58 (p, n) 30.719 --15.946 --31.886 --3.088
26 58 (p, _) 28.104 --20.361 --7.457 7.366

27 55 (n, _) 27.976 --14.004 2.917 10.101
27 55 (p, _) 26.345 --18.603 --6.311 7.263
27 55 (a, p) 45.312 --60.787 -- 15.087 1.354
27 56 (n, _) 28.805 --14.792 4.445 11.347
27 56 (p, n) 32.016 --22.382 --27.906 --2.906
27 56 (p, _) 27.925 --19.599 --6.651 7.329



8'1

TABLE A.I (concluded)

Target Z, A Reaction F1 F2 F3 Q

27 56 (a, p) 44. 865 -- 60.146 -- 15. 443 0. 254
27 57 (n, _,) 28. 520 -- 15. 094 4. 015 8. 606
27 57 (p, n) 31. 871 -- ] 5. 022 --44. 090 --4.017
27 57 (P, "r) 28.128 -- 19. 208 --7. 296 8.202
27 57 (a, p) 41. 060 --52. 797 -- 19. 468 0. 297
27 58 (n, "r) 31. 226 -- 17. 751 5. 098 10. 454
27 58 (p, n) 36. 441 -- 3 ]. 264 -- 4. 127 -- 0.405
27 58 (P, "r) 34.754 --34.281 --0.820 8.596
27 59 (p, n) 34. 613 -- 24. 289 -- 15. 019 -- 1.859
27 59 (p, "),) 30. 200 --22.401 --6. 081 9. 530

28 56 (n, _) 25. 849 -- 14. 455 3. 603 10. 235
28 57 (n, "),) 27.301 --14.368 2.682 12.219
28 58 (n, "y) 27.457 -- 15. 783 3. 839 9. 001
28 59 (n, .),) 28.123 -- 14. 279 3. 565 l 1. 389

The partition function for a nucleus (A, Z) is fitted as a function of tem-

perature to

_(A, Z, T9) -'- G1 + G2T92 + G3T93.

The parameters G1, G,, and G3 are presented in Table A.II. The partition

functions computed from these fits should be accurate to a few percent over

the temperature range 1 < T0 < 6.

TABLE A.II

Partition function parameters

G] G2 G3

1=C 1. 000 0. 0.

1'O 1. 000 0. 0.

2°Ne 1. 005 - 0. 005 0. 002

_Na 3. 890 0_ 176 --0.016

**Mg 0. 991 --0. 001 0. 002
"_Mg 5. 895 0. 043 0. 002
26Mg 1. 010 --0. 006 0. 002

reAl 5. 922 0. 022 0. 002

=sSi 1. 006 --0. 004 0. 001
='Si 2. 001 --0. 007 0. 004
*°Si 1. 008 --0. 004 O. 001

,tp 1. 997 --0. 005 0. 003

*aS 1. 007 --0. 003 0. 001
uS 3. 981 0. 003 0. 003
uS 1. 009 -- 0. 005 0. 001

'5C1 2. 010 -0. 010 0.004
*6C1 4. 845 O. 049 O. 005
mCl 4. 007 --O. 007 O. 003

*6A 1. 007 --0. 004 0. 001
*TA 4. 020 --0. 015 0. 005
ZSA 1. 010 --0. 005 0. 001



TABLE A.II (concluded)

G1 G2 G3

89A
40 A

39 K

40 K

41K

4Ofa

41Ca

42Ca

43Ca

44Ca

45Ca

48Ca

485c

44Sc

455c

46Sc
47Sc

(4Ti
(STi
46Ti
47Ti
4STi
4OTi
6OTi

47V
48V
49V
6oV
51V

4afr
49Cr

5off

81Cr

52Cr

_Cr
_Cr

5IMn
52Mn
raMn
_Mn
_Mn

62Fe
raFe
r_Fe
r_Fe
66Fe
_Fe
58Fe

_Co
56Co
57Co
58Co

69Co

56Ni
6_Ni
68Ni
59Ni
6ONi

8.012 --0.017 0. 008
1. 024 --0.016 0. 005

4.010 --0.005 0.001
14. 329 0. 173 --0. 003
4. 036 --0. 039 0.017

1.002 --0.001 0.
8. 049 -- 0. 025 0. 006
1.025 --0. 015 0. 005
7. 914 0.244 -- 0. 007
0. 996 -- 0. 008 0. 005
9.417 0.211 --0.011
1.012 --0.011 0.004

7. 843 0.118 0. 002
8. 065 0. 842 -- 0. 034
7.859 0.131 0. 023

16.100 1.031 --0.064
7. 972 --0.034 0. 026

1. 014 --0. 010 0. 004
12. 888 0. 070 0. 010

0. 927 0.021 0. 002
8. 156 0. 299 --0. 023
0.961 0. 006 0. 004
8. 073 --0. 044 0. 013
1. 014 --0.010 0. 003

5.897 0.259 -- 0. 004
8.942 0. 325 0. 006

12.108 0.329 --0. 015
12.862 0.394 0. 001

7.870 0.443 -- 0. 033

0.960 0.006 0. 004
5. 877 0.038 0.010
0.894 0.038 0.001
7.892 0.018 0.014
1. 033 -- 0.020 0. 006
3.897 0.029 0.011
0. 919 0. 024 0. 003

7. 203 0. 320 --0. 031
12.873 0.211 0. 004

7.994 0. 198 --0. 017
6.864 0.355 -- 0.003
8.832 0.285 --0.013

0. 985 --0. 001 0. 003
8.023 -- 0. 022 0. 009
1. 019 --0. 013 0. 005
3. 587 0.298 -- 0. 014
0. 920 0. 025 0. 002
7.409 0.460 --0.026
0. 928 0. 019 0. 006

-8. 016 --0. 017 0. 007
10.511 0. 416 -- 0. 027

8.005 --0. 010 O. 005
13. 980 O. 489 -- O. Ol 5

8. 082 --0. 081 O. 033

1.015 --0.009 0.002
4.014 --0.016 0. 007
1. 023 --0. 015 0. 005
4. 045 0. 249 -- 0. 005
1. 029 --0. 020 0. 007
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ABSTRACT

Various properties of dense matter in nuclear statistical equilibrium are
studied for densities and temperatures in the range l0 g _ p _ 1012g/cm a and
2 X 109 _ T _ 10 l° °K. With increasing density the stability shifts to more
and more neutron-rich nuclei. With increasing temperature the general tendency
is that nuclei of smaller charge become more abundant, and the abundances of
nuclei near a peak tend to become nearly as large as that of the peak nucleus.
The shifting of the most stable region with change of density or temperature takes
place rather abruptly from one neutron closed shell region to the next. For
densities _ _10 6 g/em 3, the ordinary iron group nuclei are most stable until
the temperature becomes about 5 X 109 °K; for higher temperatures matter in
equilibrium consists of almost pure helium. For higher density, this transition
to a helium phase takes place at a somewhat higher temperature, and the equilib-
rium configuration for temperatures below the helium transition point shifts
to the neutron-rich side of the valley of beta stability. When T _ 101° °K,
matter consists of almost pure neutrons at all densities. Rates of beta reactions
and neutrino emission generally increase with increase of density and temperature.
At a typical temperature of about 5 X l0 g °K, the neutrino energy emission rate
increases from about 2 X 1011ergs/g sec at p _ 106 g/cm g to about 2 X 10 t*
erg/g see at p ,-_ 3 X 1011 g/era 3.

INTRODUCTION

The course of stellar evolution is governed by a succession of nuclear

reactions that take place in the stellar interior. After the exhaustion of one set

of nuclear reactions, the temperature and density will tend to increase in the

interior until the ashes of the previous set of reactions become the fuel of the

next set. These nuclear reactions are generally quite sensitive functions of

density and temperature.

The bulk of nuclear energy generation in stellar interiors comes from the

conversion of hydrogen to helium. With increasing temperature, helium is

converted in turn into carbon and oxygen. At temperatures of 1 to 2 X 10 9 °K,

the carbon and oxygen ions react with themselves to form a profusion oi nuclei

in the range magnesium to sulphur. When the temperature reaches several

billion degrees, these nuclei are further transformed into heavier nuclei. If

the density of the matter does not exceed about 10 7 g/cm 3, the ordinary iron

group nuclei are the most stable, until the temperature is raised to about



7 X 109 °K," at which point a conversion of the iron into helium fiuClei takes

place. For densities greater than about l0 Tg/cm 3, under conditions" of. nuclear

statistical equilibrium the iron group nuclei will be replaced by other nuclei

having a greater neutron to proton ratio. These nuclei no longer:have the

greatest nuclear binding energy per nucleon, but they are formed in conditions

in which the electrons form a degenerate gas with a fairly high Fermi energy,

and the system attains its minimum energy by minimizing the energy of the

nuclei and the electrons together.

In order that the nuclei may be in nuclear statistical equilibrium, it is

necessary that every nucleus be transformable into any other nucleus under

consideration, and the radiation in the assembly must be in equilibrium with

the matter. A discussion relevant to tti_ese question..s have been given by

Hoyle (1946). He showed that radiati_imust be iirilstatistical equilibrium

with matter to a high degree of validky, aii tem ee i.tur.'es of several billion

degrees. Current studies of nuclear reai:tion rat_i_,indlcate" that all known

nuclei may be transformed into any other nucleu's!:l_y':nUdear reactions on a

time scale of millions of years or less at temperatures of !2 X 109 °K or greater,

and on time scales of a day or less at temperaturesiof 3. 5 X 109 °K or greater

any combination of projectiles in and projectiles out for four types of proj-

ectiles: neutrons, protons, alpha particles, and photons.
In this paper we shall not be concerned with the details of the nuclear

reactions responsible for achieving and maintaining nuclear statistical,equilib-

rium, but rather we shall be concerned with determining what the actual

abundances of nuclei in statistical equilibrium are, paying special attention

to the highest densities. These considerations may apply to the stage of stellar

evolution immediately preceding a supernova explosion, when temperatures

of several billion degrees are expected to be attained in the interior of the star,

and to the remnant of the explosion, which may be a neutron star.

The calculations are actually carried out for the case of beta-decay steady

state, in which the assembly emits neutrinos and antineutrinos at the same

rate. There may not be time for this condition to be reached in the presuper-

nova configuration, but there is more likely to be ,time for it _o be reached in

the possible neutron star remnants. At any rate, it is necessary to specify some

relation between the total number of neutrons and the total number of protons

in the system, including those in the nuclei, and the condition of beta-decay

steady state is a convenient condition to impose; it represents the state

towards which the system must tend with time.

EQUATIONS OF NUCLEAR STATISTICAL EQUILIBRIUM

The abundance of a nucleus of atomic number Z and mass number A under

statistical equilibrium is calculated from the relation (Burbidge, Burbidge,

Fowler, and Hoyle 1957):

_AMkT_312 (2zdi_ yAi2 n (A-Z)n_Z
(1) n(A,Z) = _(A,Z) \_] \-M-_] 2_ exp[Q(A,Z)/kT],



where np ahd nn are the number densities of free protons and neutrons and

Q(A, Z) and 00(A, Z) are the binding energy and partition function of the

nucleus (A, Z) respectively. The last quantities are defined as

(2) o0(A, Z) = E, (2/, + 1)exp(--E,/kT),

(3) Q(A, Z) = c2[(A - Z)M,, + ZMp -- M(A, Z)],

where I, and E, are the spin and the energy of the rth excited level, the sum-

mation being taken over all the excited states of the nucleus, and M_, Mp, and

M(A, Z) are the masses of the neutron, hydrogen atom, and the atom (A, Z),

respectively. The notation is that of Burbidge, Burbidge, Fowler, and Hoyle

(1957). All atomic masses and transition energies used in the calculations of

this paper were taken from the semiempirical mass formula of Cameron (1957)

if they were not known experimentally (Everling, Konig, Mattauch, and

Wapstra 1960).

Assuming that Q and co are known, the only unknowns in equation (1) are

T, r_, and nn. In our approach, the electron Fermi energy EF and temperature

T are selected as the free parameters. Therefore, we need relations connecting

EF to n_ and np. EF is generally expressed in the form

(4) EF = EF(ne),

where ne is the electron number density. For nonrelativistic and extremely

relativistic electrons, this reduces to

EF = (3C)_/3 _
ene 2/3

EF = (3C)l/_hcne ll_
(5)

(nonrelativistic),

(relativistic).

The conservation of charge requires that ne should be equal to the sum of all

the positive-ion number densities times Z,

(6) ne = 2_ j Zjn (A j, Z_).

The summation is taken over all the ions j of interest with A > 1 and Z > 1.

Under steady-state conditions, there are various photobeta processes

connecting neighboring nuclei. These are beta decays originating in the

statistically populated excited states of the nucleus as well as from its ground

state (Cameron 1959). These beta processes are important in maintaining a

balance between neutrons and protons (including bound nucleons as well as

free ones). Under steady-state conditions the total number of electron emis-

sions per unit time must be equal to the total number of the inverse processes

(electron captures plus positron emissions per unit time):

(7) Ei P-(A ,, Z,)n(A ,, Z,) = Z, P+(A,, Zk)n(A,, Zk),

where P+ is the rate of a beta reaction per nucleus with the negative sign

indicating electron emission and the positive sign indicating electron capture

or positron emission. Because_of the high densities involved in most of our

calculations, we have neglected positron capture processes.



(8) -P-- _i ai)_,

where

(2I, + 1)

at- o_(A,Z) exp(--EJkT)

is the fractional population of an excited state with energy E,, and ), is the

decay constant. The summation is taken over all the nuclear energy levels.

The abundance of any nucleus of interest n(A, Z) is then calculated by

solving equations (1) through (8) for any given set of values of EF and T.

The total density of matter is obtained by the requirement for the conservation
of mass:

(9) p = ]_k Akn(Ak, Z_,)/No,

where No is Avogadro's number and the summation is taken over all nuclei k

with A >/ 1 and Z >I 0 which contribute appreciably to the total matter

density.

LEVEL DENSITY RELATIONS

In the equlhbrmm abundance calculatxons outhned m the prevmus sectmn,

there are two places where summation over excited nuclear levels becomes

necessary. One is in equation (2) for _0and the other is in equation (8) for P.

The nuclear level structure is fairly well known in the vicinity of 6 to 8 MeV

through study of neutron resonances. In this and higher-energy regions the

level spacing is sufficiently small so that conventional level density formulas

are reasonably valid. Unfortunately, however, such formulas are not much

help in the present problem, because the contribution to the summation in

equation (7) is expected to be greatest from the intermediate levels around

3 to 6 MeV in the temperature range in which we shall be interested. A recent

paper by Gilbert and Cameron (1965) shows how a composite nuclear level

density formula may be constructed which is reasonably valid over the entire

range of excitation energies. The results reported in this paper were obtained

before the final form of the composite level density formula was ready, and so

nuclear level densities were handled by approximate methods in the general

spirit of the approach later developed in the paper by Gilbert and Cameron.

It was pointed out by Ericson (1960) that if the logarithm of the total

number of nuclear levels below a given excitation energy is plotted versus that

energy, a good straight-line relation is obtained:

(10) N = exp[a(U -- U0)],

where N is the total number of states up to the excitation energy U, and a and

U0 are constants determined by the slope and the intercepts of the straight line

drawn along the staircase diagram. Such graphs were plotted for various

nuclei, and the staircase was seen to cluster closely about the straight line.

Level structure thus shown in graphical form is distinct up to an excitation

energy of about 3 to 6 MeV. Therefore, in general the line can be extrapolated
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up to about 7 to 8 MeV, where conventional level density formulas start to

become applicable (Gilbert and Cameron 1965).

This method provides us with a means for direct summation up to about

6 to 8 MeV, thus avoiding the use of level density formulas, which are poor

approximations in the intermediate region of interest. In the present research,

the summations were carried out in this way up to about 10 MeV and the

levels were terminated there. The results indicated that this method is fairly

reliable up to a temperature of 5 X 10 9 °K (that is, the contribution from

states higher than 10 MeV can be neglected in this temperature region). But
a serious deviation was noticed when the calculation was carried out at

10 X 109 °K.

In a preliminary analysis of data for nuclei up to the iron region it appeared

that the constant a of equation (10) could be crudely represented by the follow-

ing relations:

a = 0.020A MeV -x for odd-odd nuclei,
(11)

a ---- 0.016A MeV -x for all except odd-odd nuclei.

In the work carried out here it was generally found that for any given

density only about four nuclei would in general contribute appreciably to the

beta-decay interactions. Consequently the level densities of only a very small

number of such nuclei needed to be computed with any attempt at accuracy.

Hence the logarithm of N was plotted against U for all nuclei with the same

value of N or Z as the neutron-rich nucleus of interest. The plots made use of

available experimental data such as those compiled in Landolt-Bornstein

(1961). Then a straight line was drawn with the slope a obtained from equation

(11) through the lower portions of the staircase diagram, and the intercept U0

was obtained. This procedure seemed quite sufficient for the purpose of the

present survey of the equilibrium abundances in nuclear statistical equilibrium

at high densities.

BETA TRANSFORMATION RATES

The decay constant ), appearing in equation (8) is inversely proportional to

the half-life t, and it may often be estimated in terms of the comparative

half-life (ft), where f is the Fermi function. Equation (8) may then be written

in the form

(12) p = _ (2I, + 1)In2[fd(fl),] exp(--E,/kT)
, E_(2Ij + 1) exp(--E/kT) '

where the Fermi function is defined as

(13) f = f (W" -- 1)'t_WW,2F(Z, W)S dW.

F(Z, W) takes into account the Coulomb effect, the factor S conveniently

includes all the modifications necessary to allow for the effect of the Pauli

exclusion principle in the degerrerate electron gas, W is the electron energy

including the rest mass, and W, is the neutrino energy, both expressed in units
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of rod. For any nucleus the transformation rate _P from equation (12) requires

an estimate of the Fermi function ft, the (,ft) value, and the spin I_ and energy

E_ of each excited state i before the summation is taken.

For ordinary beta transformations the Fermi function f of equation (13)

has been given to a fairly good approximation by Feenberg and Trigg (1950)

for positron and electron emission, and by Major and Biedenharn (1954) for

electron capture. Applications of these for nondegenerate matter at high

temperatures were given by Cameron (1959). A more generalized consideration,

including both nondegenerate and degenerate cases, was given by Bahcall

(1964).

For temperatures in excess of 2 X 109 °K, all atoms are ionized and captures

of bound electrons are negligible. Hence for such high temperatures the capture

of continuum electrons and the emission of positrons constitute the inverse

processes that must be balanced by electron emissions, as long as the density

does not exceed about 107g/cm S. At higher densities the Pauli exclusion

principle causes electron degeneracy, and electron emission rates are greatly

reduced because of a lack of unoccupied electron states. Also, as the density

is increased, the free capture rates are greatly enhanced because more electrons

are present to be captured. However, the positron emission rates are hardly

affected by the increase of density, and therefore at a sufficiently high density

positron emission becomes negligible in comparison with continuum electron

capture.

For completely degenerate matter equation (13) reduces, to a first-order

approximation, to the following expressions:

(i) Electron capture:

(14a) f. = fwWF(W 2 -- 1)l/2w(w'+ Wo)2F(Z, W) dW,

W_= 1 ifWo> --1,

Wx = [Wo[ if Wo < --1.

(if) Electron emission:

f2(14b) f_- = (W _- 1)'/2W(W0- W)2F(Z, W)dW.
F

Here WF is the electron Fermi energy and W0 is the threshold energy of the

beta transition, both including the rest mass and expressed in units of:mc _.

W0 > -1 corresponds to the case where the nucleus in question undergoes

positron emission in the laboratory or bound electron capture (exoergic).

W0 < -1 corresponds to the case where the nucleus is the product of electron

emission and is stable under ordinary conditions in the absence of degeneracy

(endoergic).

Equations (14) may be integrated to give the following results:

(i) Electron capture:

(15a) fc = (b_>[_PF s + _P_._(1 + Wo 2) + ¼Wo{2PFWF 3 -- PFWF

-- ln(PF + WF)}
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if Wo > --1;

(15b) fc = (F){i(Pv 5 -- Po 5) + ½(Pv 3 -- Po3)(1 + Wo _)

- llWol[2(P_W_'- PolWo[9

- (P_W_ - -PolWol) - ln(P_ + w_) + In(Po + IWol)]l

if Wo < --1.

(ii) Electron emission:

(16) f__ = fo(1 -- A/p),

,x/p = _rl(eF, Wo)/zl(eO, Wo),

Ii(x, y) = }x 5 + -_x3(1 + y_) -- ly{2x(x 2 + 1) 3/_ -- x(x _ + 1),/"

-- ln(x + (x" -I- 1)'/2)}.

Here (F) = 2raZ if Z > (2ra)-' _-_ 23(a = 1/137),

(F) = 1 if Z < (2ra)-',

PF _ _ (WF 2 -- 1)

and Po 2 --= (Wo 2 - 1).

fo is the electron emission Fermi function as given by Feenberg and Trigg

(1950).

For extreme degeneracy, where the electrons become relativistic, and the

approximation p2__ W 2 _ 1 _ = W 2 applies, we obtain the simpler ex-
pressions:

(i) Electron capture:

5 2 3 __(17a) A = HP)[(W_,_ - 1) + _Wo(W_' 1) + _Wo(w_ 1)]

if Wo>> -- 1;

(17b) f_ = -_(F)[(WF -- IWol)5+ _lWol(WF- IWol)'+ _lWol_(w.-IWol)']
if Wo << --1.

(ii) Electron emission:

(18)

where

A- = f°(1 -- A/if),

A/f ° = D,(WF, Wo)/D,(Wo, Wo)

D,(x, y) =-- ](x 5 --1) -- ½(x'-- 1)y + ½(x 3 -- 1)y _.

It will be noticed that for a given beta transformation energy the Fermi

• function depends upon both the nuclear charge and the electron Fermi level.

However, as will be indicated later, for a given Fermi energy the Fermi

functions f are required for only a narrow range of Z, in the vicinity of the



abundance distribution. Prehminary determinations of the abundance distri-
butions at higher densities were made in order to determine the relevant
rangesof Z.

Fo., a given temperature T and Fermi energy EF, an approximate value of

the matter density p may be obtained by guessing the mean molecular weight

of the system per electron. Provided one additional constraint on the system

is specified, the abundance distribution may then be calculated by adjusting

the values of nn and np in equation (1). The additional constraint chosen for

the preliminary survey is that the most abundant nuclei in the system should

be stable against beta transformation in the presence of the degenerate

electrons corresponding to the chosen value of the electron Fermi energy.

This preliminary determination of the abundance distributions proved to

be quite close to the one that was finally determined. On the basis of this

survey the most probable values of Z were found to be 26, 28, 32, 28, both 28

and 40, and 38 for electron Fermi energies of 0, 5, 10, 15, 20, and 23 MeV.

The two values of Z corresponding to Er = 20 MeV were chosen because it

appeared that there were two abundance peaks of comparable height at this

Fermi energy. Fermi energies higher than 23 MeV were not chosen because

ttl_ 6iiiV6y lJ_ul_tt_t tl_ctt uie _y_[em would have become iargeiy composed of

neutrons at such values of the Fermi energy. However, since it appeared that

such nuclei as 3H and 6He might become important under these neutron-rich

conditions, it was decided to calculate Fermi functions at higher electron

Fermi energies for the case Z = 0.

Values of the Fermi function f for these various cases are plotted in Fig. 1

(for electron emission) and Fig. 2 (for endoergic electron capture). Exoergic

electron capture is not shown because such transitions are not important in

the region of high density. It is noteworthy that for high values of the electron

Fermi energy the Fermi function may be very large for electron emission and

capture processes. This indicates the likelihood that beta transitions of quite

moderate energy may nevertheless take place extremely rapidly under con-

ditions of very high density.

SPIN AND PARITY CONSIDERATIONS

The comparative half-life (ft) appearing in equation (12) is a measure of

the inverse square of the matrix element [M I and the strength of the interaction

g:

(19) (ft) = (In 2)/e_IMI _.

If the degree of forbiddenness of a beta transformation is known, then a

typical value of (ft) may be assigned to it, although this may have a probable

error of a factor 10. Since the great majority of the beta transformations

involved in these calculations have not been measured experimentally, includ-

ing all of the transitions between the excited nuclear states, it has been

necessary to adopt this approach of assigning reasonable values to (ft) depend-

ing upon the degree of forbiddenness of the transition. The degree of forbidden-

ness of the transition, in turn, depends upon the spin change and whether or
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not there'is a parity change in the transition according to the well-known

selection rules. However, since the spins and parities of the excited states

involved in the nuclei of these considerations are not known either, it has been

necessary to adopt a statistical approach to the assignment of these (ft) values.

For the nuclei under consideration here, the spin and parity of the ground

state and of a few of the lowest excited states were estimated using the shell

model and empirical data.

For each chosen value of the electron Fermi energy, the transition rates

were estimated among four nuclei considered to be the most important in the

assembly. Because of the considerable uncertainty in estimating the trans-

formation rates between these nuclei, it was felt that the other nuclear

transformations, which would be of less importance in any case, could be

neglected. Table I shows the nuclei chosen in this way for each of the various

TABLE I

Assigned properties of the nuclei determined to be the
most important participants in beta processes at various
Fermi energies. If the spin-parity assignment does not
correspond to the ground state, it is likely that it corres-

t-"............. J =--_ .............

Fermi energy
(MeV) Nuclei Spin-parity logl0 ft

0.17 SSMn 5/2 -- 5.5
55Fe p 3/2 --
57Co f 7/2 -- 6
57Fe p 5/2 --

5 65Co f 7/2 -- 5.5
65Ni f 5/2 --
_Cu p 3/2 -- 4.5
GTNi p 1/2 --

10 81Zn d 5/2 + 6.5
SlGa p 3/2 --
S_As p 3/2 -- 6.5
S3Ge d 5/2 +

15 79Ni d 5/2 + 6.5
79Cu p 3/2 --
81Ga p 3/2 -- 6.5
81Zn d 5/2 +

20 123Zr f 7/2 -- 7
mNb g 9/2 -+-
mNb g 9/2 + 7.5
121Zr h 11/2 --

23 mRb f 5/2 -- 7
mSr d 3/2 +
mZr d 3/2 + 6.5
my p 1/2 --

values of the electron Fermi energy for which calculations were done. It shows

the spin and parity assigned to the ground state or a low-lying excited state

of the nuclei and the value of (ft) that was estimated for the transitions

between these states.
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As indicated above, for the higher levels a statistical approach was used.

The nuclear spin distribution is predicted to have the form (Bloch 1954;

Hibdon 1959; Ericson 1960):

(20) 0(3) = p(O)[exp(--J2/(2Cr)) - exp(-(J + 1)_/(2Cr))],

where p(J) is the density of nuclear levels with spin J, p(O) is the density of

levels with zero spin, r is the nuclear temperature, and C is a constant. Some

authors use the symbol a, which is related to this expression by

= (C_)_n.

is a parameter characterizing the distribution function and is a very slowly

varying function of the excitation energy U through the nuclear temperature r.

Using the expression

(21) C = (A SlaB2/55) MeV -1, B = 0.55,

for the constant C, Hibdon (1959) concluded that 2Cr = 6 gives the best fit

to the observations for 2SAl. In Huizenga and Vandenbosch (1960) and

Vandenbosch and Huizenga (1960) it is shown that _ is about 2 to 5 for various

nuclei with mass numbers in the range 80 to 200. The value of 2Cr was esti-

mated by using the value of C given by equation (21) and by obtaining r through

the use of the simplest level density expression as given by Blatt and Weisskopf

(1950). As the energy of the excited level changes from about 1 to 10 MeV,

2Cr varies from about 10 to 30 for A in the vicinity of 80, while it varies from

about 13 to 36 in the vicinity of A = 120. These results are consistent with

Huizenga's conclusion. A smaller value of 2Cr would be expected for smaller
mass numbers and hence these results are also consistent with Hibdon's

conclusion.

The average spin of the excited states was computed through the expression

(22) (J) = E J$(J,) E P(J,) •
dl=O di=O

The summation for d higher than 10 is not necessary because a sample cal-

culation with a = 3 shows that 0 is already negligible at J = 7, with a peak

around J = 2.3.

It is evident that when the sum over beta transitions involving the higher

excited states of a nucleus is performed, only the allowed transitions need to

be taken into account. The contributions from the forbidden transitions are

small compared with the uncertainties in the contributions from the allowed

transitions. It was assumed that all allowed transitions have logft = 5.5.

This value of logfl was used in equation (12) for all transitions involving the

higher excited states of nuclei, but each such term was then multiplied by the

probability that the combinations of spin and parity of the initial and final

states of the transition should correspond to an allowed transition. This

probability is given by the expression
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(23)

/ E 0(I,)
L Jl_O

p(J_ -t- 1) = 0

P(Ji- 1) = 0

(Ji + 1) + p(J_) + p(J_ - 1)
10

p(J,)
dl=O

if Jj -- 10,

ifJ_ = O.

;

The factor _ arises from the fact that both odd and even parities are about

equally probable (Ericson 1960).

Evaluations of the expression in equation (23) show that there is about one

chance in four that an arbitrary transition is allowed for the lower excited

states of the nucleus up to a few MeV, while there is only about one chance

in five or six that a transition between higher excited states in the vicinity

of 6-8 MeV should be allowed. The variation is a consequence of the increase

of average spin with excitation energy.

Typical results of the calculations for beta transition rates in a few of the

key nuclei are shown in Fig. 3. The key nuclei are those given in Table I for
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the Fermi energies of 0.17, 15, and 23 MeV. It may be seen that the rates are

very sensitive functions of both temperature and electron Fermi energy. At

the higher Fermi energies and temperatures some of the nuclei may have

beta-transition lifetimes in the range of milliseconds. The resulting neutrino

emission rates can be very great, as is discussed later.

EQUILIBRIUM COMPOSITIONS

The final values of the equilibrium compositions were determined by adjust-

ment of the values of np and n, in equation (1) subject to the boundary con-

ditions that the electron Fermi energy was specified and that the rate of neutrino

emission from the material will be equal to the rate of antineutrino emission.

The adjustment of free-particle number densities was carried out by an iterative

procedure. It was found that the desired density could be approached to any

degree of approximation desired by adjusting the product npn_, and equality

of the neutrino and antineutrino emission rates could be approached to any

desired degree of approximation by adjusting the ratio n_/n..

The final values of n_ and np/n_ are plotted as a function of density for several

different temperatures in the Figs. 4 and 5. It may be observed that the

material rapidly approaches a pure neutron gas in the density interval 1011 to

1012 g/cm s.

40 I t t I I 1 I t

FIG. 4. Neutron number densities at several temperatures plotted as a function of the total
matter density.

I I I I I I I
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The equilibrium abundance distributions corresponding to a temperature of

5 X 109 °K are plotted for Fermi levels of 0.17, 5, 10, 15, 20, and 23 MeV in

Figs. 6 through 11. The material density for each Fermi energy is also given in

the figures. At the lowest Fermi energy, the equilibrium configuration is peaked

at the nucleus 5°Fe, a well-known result. At 5 MeV the peak has become very

broad, but for higher Fermi energies the abundance distribution is once again

strongly peaked, and the peaks then remain for still higher densities. These

narrow peaks at high density correspond to the influence of closed neutron

shells upon the stability of nuclei. For Fermi levels of 10 and 15 MeV the most

abundant nucleus has a closed shell of 50 neutrons. At 20 MeV the peak has

slipped a little beyond 50 neutrons: the most abundant nucleus has 52 neutrons.

However, it may be seen that another abundance peak centered about 82

neutrons has become almost as important as the peak at lower mass number.

At 23 MeV this has indeed become the dominant peak and the most abundant

nucleus has 82 neutrons.

Similar calculations were made at temperatures of 2, 3, and 4 X 109 °K and

for the same values of EF. The position of the abundance peaks remained

unchanged at the lower temperatures, but the widths of the abundance distri-

butions were much reduced. A comparison of the distributions at 5 X 109 °K

and 2 X 10 9 °K for a Fermi energy of 10 MeV is shown in Fig. 12.

Our calculations done at a temperature of 10 l° °K showed that the material

had been broken down almost completely into individual nucleons at this
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The effect of temperature on the width of the abundance peak at a Fermi energy

temperature. For the higher densities, the composition was nearly that of a

neutron gas, while at the lowest densities neutrons and protons were more
nearly comparable.

One of the properties of the material required in the studies of dense matter

is the mean molecular weight per electron, #e, defined as

(24) Ue "= [__,, A,n(Ak, Zk)]/[Z, Z,n(A ,, Z,)],

where k is summed over all nuclei for A > 1 and Z >/0, and i is summed over

all nuclei with A >/1 and Z >/1. Values of Ue found at temperatures of

5 X 10 9 °K and 2 X 10 9 °K are listed in Table II. The difference in the mean

molecular weight at the lowest density is due to the larger fraction of 4He at

TABLE II

The mean molecular weight per electron for various Fermi energies and temperatures

Fermi energy (MeV)

T (°K) 0.17 5 10 15 20 23 25

5 X 109 2.08 2.375 2.563 2.720 2.985 3.06 7.158
2 X 109 2.16 2.362 2.563 2.677 2.848 3.138 5.970
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the higher temperature. When the temperature increases above about 6 X 109

°K, at this small density, the composition of the system changes to favor 4He.

However, at high densities and high temperatures the abundance of *He is not

important.

ENERGY LOSS RATES

In an assembly of nuclei in the statistical equilibrium, neutrinos and anti-

neutrinos are produced continuously through the beta processes

n(A,Z) + e---_n(A,Z -- 1) + v,
(25)

n(A,Z) --_n(A,Z + 1) + e- + v.

For most of the systems that have been considered in which matter of com-

position such as that given in this paper would exist, the neutrinos and anti-

neutrinos would be radiated away into space and would carry considerable

amounts of energy with them. The rate of energy loss through these processes is

L, = __,, U,n(A,,Z,),

(26) U, = Z, (2I, + 1)),,o:, exp(--EdkT)/o_(A ,, Z,),

X, = (In 2)fJ (ft),,

where Us is the energy generation per second per nucleus, n(A z, Zz) is the

abundance of the nucleus l for the beta process in question, and _,_o:_ is the

average neutrino energy production per second per nucleus for the parent
nucleus in an excited level i:

(27) _o, = f(w 2 -- 1)I/2WW,"F(Z, W)SdW/

f (w 2 -- 1)I/2WW,2F(Z, W)SdW.

The sum over l is carried out over all nuclei (A z, Z,) of interest, and the sum

over i is carried out over all excited nuclear levels. The remaining symbols are

those previously defined.

For complete electron degeneracy, the last expression becomes:

(i) Electron capture:

WF/*

(28a) o_, = awlx
(W _ -- 1)I/2w(w + Wo)3F(Z, W) dW/(fc),;

W.= 1 if W0> --1,

Wx = [Wo[ if Wo < --1.

(ii) Electron emission:

f?(28b) ¢,= (W 2- 1)'/2W(Wo - W)3F(Z, W) dW/(,fc-),,
F

wherefc andfe_ are given by equations (14a) and (14b).

These integrals reduce to the following approximate forms:
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(i) Electron capture:

5 [_1- y6) --_x(1 _ yS)_.k3x2(l_ _ y4)l5 2"(29a) o_, = _ (Wr + W0) _ yS) _ _ x(1 -- 2 4) --]- _ x (1 -- 23)

where x = Wo/(Wv + Wo),

y = (1 + Wo)/(WF + Wo), if Wo >> --1;

5 I 12 32](29b) _o, g(WF-- ]Wo]) 1-k-rxT_xl+_x+_x

where x =- [Wo[/(WF -- [WoD if Wo << - 1.

(ii) Electron emission:

(30) o_, = D,(Wo, Wo) 1 -- D_(Wo, Wo) 1 -- DI(Wo, Wo) J'

where D1(x, y) is defined in equation (18), and

T) f_ _,'_ : __1(,v.6 __ 1_ -I- _3/_5 -- 1"_, -- _3(_.4 __ 1"_,2 -1- 1(.,.,.3 -- 1"_,_,3

The total energy loss rate is the sum of the energy loss rates due to neutrinos

and due to antineutrinos.

Energy loss rates were calculated from equations (26) to (30) for the key

nuclei given in Table I. The total energy loss rates thus obtained are plotted

as a function of temperature for a family of electron energies in Fig. 13. There

is a striking dependence of the energy loss rates on the temperature and

density. We shall designate the energy loss by these combined processes as the

generalized URCA process.

There is a comparison between the generalized URCA process energy loss

rates and those due to the plasma neutrino process (Adams, Ruderman, and

Woo 1963 ; Inman and Ruderman 1964) in Fig. 14. It may be seen that above a

temperature of 2 to 3 X 109 °K the nuclear URCA process exceeds the energy

loss by the plasma process. Thus it is evident that the URCA process should be
taken into account in detailed calculations of stellar evolution in which stellar

material comes into the temperature and density range of interest to the

calculations of this paper.

It must be emphasized that all the calculations reported in this paper are

exploratory in character. They were carried out as part of a broader investi-

gation of the properties of neutron stars, which will be reported in more detail

in other papers. However, the interest in possible application of these calcu-

lations extends beyond the neutron star problem, and hence we have considered

it desirable to give the various details that have been shown. If we were to

repeat the calculations today we would use better values of nuclear masses

(Cameron and Elkin 1965) and of nuclear level densities (Gilbert and Cameron

1965). The Fermi functions were calculated for the case of complete de-

generacy; more accurate expresgions could be used.
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A. Mixtures in Statistical Equilibrium

Several sections of make use of the properties

of mixtures of non-interacting particles in statistical equilibrium.

These terms are used here in a specific way, i.e.s

1. A mixture of non-interacting particles consists of any

combination of particle concentrations where individual contri-

butions from any given type of particle to the variables pressure,

energy, entropy and thermodynamic potential depend only on the

concentration of that type of particle. Thus, for a mixture of

electrons and positrons, the state of the system at any given

time is to be described by treating electrons and positrons

separately.

2. In a mixture in statistical equilibrium the thermodynamic

potential t (see below) tends to a minimum for a fixed temperature

and pressure.

3. If condition (2) is satisfied but there are energy losses

from the system (neutrinos, photons, etc.), then it is assumed

(or shown) that the composition of the system changes slowly

compared to some chosen dynamic time scale. A special case of

this is the system consisting of electrons, positrons and photons

in equilibrium 'where pair annihilation into neutrino-antineutrino
I

pairs is the only loss mechanism assumed. Since each pair carries

off ser0 lepton number the composition cannot change in time

except as the temper&ruts drops due to energy loss.



4. It is aAways assumed that the chemical potentials (see

below) of neutrinos and antineutrinos (of electronic or muonic

kind) are equal. This, as will be shown, implies that their

concentrations are equal. Rephrasing this, the assumption is that

throughout the previous history of the system there has been no

mechanism whereby one kind of neutrinohas been stored in preference

to another.* Thus, under the conditions of (3) this means that

equal concentrations of neutrinos will persist for all times of interest.

B. Thermodynamic Condition for Equilibrium

To find the condition necessary for equilibrium we follow

Landau and Lifshits (1958) and express the thermodynamic potential

t as a function of concentration (i.e., number density), temperature,

and pressure,

Q . I(T,P,Ni)

where i represents all of the constituents. A necessary condition

for t to be a minimum, for fixed T and P, is that its total

derivative vanish,

+ ÷... - o
_Sl _N 2 _N--_ + _N 3 _N 1

where the subscripts on N range over all types of particles.

Without loss of generality we will restrict this to three types

of particles which can react according to

This view would be unreasonable if it turned out that the

universe contained a surplus of one kind of neutrino or another.

Some arguments against this possibility are given in Wheeler
st ai (1965), chapt. 9.



AI + A2 *-* A_ .

This fixes the rate of change of one number density with respect

to another explicitly, i.e., _N1/_N 2 - 1, _N1/_N 3 --1, etc.,

so that the equilibrium equation becomes

. -0
_N 1 _N 2 _N 3

Defining the. chemical potential _ (which always includes rest

mass in this thesis)

p
_i " bNi T,P

then,

_I + 92 " _3 " 0 .

The extension to more complex systems is straightforward.

Some examples appear later.

C. Calculation of Thermodynamic Quantities

For the physical conditions we encounter, quantum statistics

are necessary to describe the state of the system. The relation

between chemical potential and number density is given by the

well known expression*

p2dp

N - _ exp [(E-_)IkT] * 1h3
o

Eg., see Landau and Lifshitz (1958), chapter V or Chandrasekhar
(1939), chapter X.
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where g is the spin multiplicity g - 2S + 1, p the relativistic

momentum and E the relativistic total energy

s2 (pc)2+ (,_02)_.

The plus (minus) sign in the denominator is for fermions (bosone).

The Planck and Doltzmann constants are, respectively,

h - 6.625 x 10 -27 erg-eec,

k - 8.6167 x 10 "11 MeV/°C.

Defining the dimensionless variables

/

X = p/me ,

. E/_,o2 (i+ 2)112
m p

- mc2/kT ,

and u - M/ac 2

we have

W

x2dx

E_Cy-u)].+I "

Numerically, this becomes

ao

x2dx
e

o



where m is the electron mass and
e

ao - 1.76 x 1030 cm "3 .

The corresponding expressions for pressure and total energy

are

al I x 4 dxe - g (_)4 _g_ _ exp [_(y-u)]± 1 '
0

O0

al r =vx2dx
_ " g (aa-'-)4"_- J exp [p(y-u].+1 '

e
o

where

aI =

8,_m40 5
e

h5
- 1.44 x 1024 ergs/cm 3 (or dynes/cm 2) .

None of the above integrals are expressible in terms of

elementary functions and must either be integrated numerically

or suitable expansions must be found for limiting oases. For

fermions, two limiting cases will be distinguished -- degenerate

and non-degenerate. The latter is said to hold if u _ 0 (with

T>O) in which case (following Chandrasekhar, 1939) the Fermi-

Dirac denominator may be expanded in powers of the exponential.

The resulting integrals are directly expressible in terms of the

modified Bessei functions Kn, and yield, for u _ O,

.N - g ( ) T ( exp npu n13
e

nml



= 4al

-@ n-1 k (n[3)2 + n[3 .1

az )n+l K2(nP)P-. (_-)4T _ (-z ._p n_., ,
e n-1 (np)2 "

(For oomputer appltoation, the funottons K2 and K 1 are most easily

evaluated using the polynomial approximations given in Abramowitz

(z964), p. 37e.)

The integrations for & degenerate fermion gas are more involved

but the method of Sommerfeld* yields comparatively simple expansions

Fermi momentum, have that value given for a oompletely degenerate

gas (zero temperature), t.e.,

[a--'_' me ] ]i/].,.. 6 (.£_) s .

Then,

" T 7 2z'_ 40p4x eJ '

a 1 =UF(X*3x 2 ,UF(2X4-X2*l)
E - _ (_e) 4 _ _(x)[l + _ ) 7x43p2x g(x) + lplZ4x 5 g(x) ] '

P" _ (_e'e)4 4"8 p2 t--_) 15p4 xlf(x) j '

' ' i

See Chandrasekhar (19_9),. p. 389.
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wh@rs_

and uF is

s(") - _ xC2x2+l_)- in (_+_),

f(x) . e_3_ - 3g(_) ,

the dimensionless, degenerate total Fermi energy

i+x2)1/2_-(

It is by means of these expansions that we determine whether

the gas is degenerate -- the condition being that the second term

in all expansions must be small compared to unity. The results

will be accurate to within a fraction of a percent if the second

term is _ 0.05.

In the no man's land where 1 _ u > O, or the gas is not

degenerate according to the above criterion, then the integrals

must be done numerically.

D. Equilibrium Abundances for Electron-Positron-Radiation Mixtures

A particularly simple example of a mixture in equilibrium

is that composed o£ electrons, positrons and radiation at high

temperatures.* When kT _ meC2 (T _ 6 x 109°K), pair annihilation

and creation proceed at sufficiently rapid rates that chemical

equilibrium for these reactions, i.e.,

+ " 8• + e _ photon

i

Some of this discussion follows Landau and Lifshits (1958),
chapter XI, and Chiu (1961a).



_s established. To see this we compute rough rates for the

reactions. From second order perturbation theory the extreme

relativistic cross sections for both pair creation and annihilation

are approximately (B_orken and Drell, 1964)

m c2

°c.~

where the energy E refers to either photons or electrons, and r
O

electron radius, r_- - 7.94 x 10 -26 cm 2. Foris the classical

kT - mo 2 lO 28, the number density of black-body photons is N _ 2 x
' 7

cm "3. From the equilibrium calculation to be described below,

the number density of electrons or positrons is _ 3 x lO )v cm -).

Without much error we assume all particles to have the energy kT

and velocities close to o. Hence, the rate of pair creation is

con 2 _ 1041 sec-lcm -3 and for pair annihilation _ 104.5 sec'lcm "3.
7

The mean life per particle is then _ 10 "15 sec. which is much

shorter than any dynamic time scale we consider and is sufficient

to guarantee equilibrium.

The condition for thermodynamic equilibrium requires that

the sum of electron and positron chemical potentials equal some

multiple of the chemical potential of the photon gas. However,

since the photon_number is a variable quantity, the photon chemical

potential must be zero. Hence,

U.+_+ - Oo

If we generalize the problem to the case where there are N
O

"permanent" electrons associated with ions in the gas, then charge



neutrality demands that

N -N -N
- + 0 I

where N and N are total numbers of electrons and positrons.
- +

_or a given temperature and N , this equation and the relation
o

__ - - g+ are sufficient to determine N. and N+ - or, as required

in the first, part of this thesis, g can be found. Figure _li, l

shows the results of the latter calculation where P/ge is related

tO N by
O

P/_e " 1.67 x 10 -24 N gms/cm 3o

where p is the ion density of the medium (in gm/cm3), and

= (A/Z)av_ , the mean molecular weight of the ionic electrons._e
y

T 9 is the temperature in units of lO 9 OK, and u - __/mc 2. N

and N+ are shown in Figure_2 where negative as well as positive

values of u - u are represented. (Notice that N is given in

the "natural units" a ° - 1.76 x lO 30 cm "3.) This curve also

illustrates the characteristics of an electron gas. For u less

than zero the number density falls off as a negative exponential

in u corresponding to a non-degenerate Maxwellian gas. For large

positive u (degenerate region) it goes as the Fermi momentum

cubed and relatively high temperatures are required to lift the

degeneracy.

Ee Equilibrium Mixtures for Neutron Stars

In order to compute neutron star compositions it will first
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be necessary to generalize the results of Section B. _

Consider a mixture composed Of any set of elementary particles

that satisfies the conditions of Section A. The thermodynamic

potentials for a particular type of p_rticle will be deeiKnated
.- . .

by _t" The total potential is then the sum of all _i'

t = Z 9t(baryono) + Z _t(&ntibaryons) + E 9t(leptons)

÷ E _i(antileptons) + Z _i(aeeone and antimesone) + E _i(photons).

For equilibrium it is required that t be a minimum. This

and so we impose the following natural restraints,

1. Baryon number, electronic lepton number, and muonio

lepton number must all be conserved in processes leading to

equilibrium.

2. The mixture must be electrically neutral.

These conditions are expressed by,

: .+i('baryons) - : .i(&nti"bm,,yons) -oonstant." .'(B),

T- Nt(electronio leptono) - m Nt(eleo. antileptons) - constant

- .'(e),_

Z Nt(muonio leptono) - Z Nt(muonio anttleptons) - constant

- .'(_),

_- qtNi(all particles) -- O,

_The method to be outlined is essentially that o£ Ambartsumyan

(1960) and Tsuruta (1964) except that their calculations are
restricted to mixtures st serotemporsturo.



where q is the charge number of a specific type of particle,

sq., q - - 1 for antiprotons, mere for neutrons, etc.

To incorporate these with the minimization of _ we use the

method of Lagran6e multipliers and define

_' - o + a u(B) + b ZqS + o !Co) + d U(I,),

where a,b,o,d are coefficients to be determined. Since it ie

required that

_F , O, (i ranging over all types),
aN i

it follows that

+ bq + a - 0 for

p + bq - a - 0 for

u + bq + o - 0 for

+ bq - o - 0 for

+ bq + d - 0 for

+ bq - d - 0 for

+ bq - 0 for

baryons

antibaryons

elec. leptons

elec. antileptons

muon leptons

muon antileptons

all mesons, photons

We assume that l_rticles predominate over antiparticles so

that it is convenient to express a and b in terms of proton and

neutron chemical potentials. We obtain,

o, - OJnCl-q)+ qo,p for

- -. i,nCl+q) + q,_pfor

baryons

antibaryons.

As is the case for all particles, the transformation particle



antiparticle implies q-0 -q, eo the relation between particle

and antiparticle M's is

. (l_tiole) - -p (antipa_iole).

a small abundance of its anti.

Furthermore, we have,

It is for this reason that a large abundance of a particle implies

(See eg., Figure AX-2)

o . - , ("e) " " (_,)

d - - , (v,) - , (_,.)

where v e and vM are electron and muon neutrinos. But by the

application of condition (4) of Section A, M(v) - M(_), or,

p.Cve) -. IA(V,) - M(_e ) = ,(_p) .. o*. Hence, _ = p.n-Pp for

negative electrons or muons, and finally

" " q("p'"n)

#-0

for mesons

for photons (as in Section D).

The condition on , for the boson mesons needs some clarification,

Strictly speaking, a boson chemical potential cannot exceed the

particle's rest mass energy, and will equal the rest mass energy
%

only when the temperature is near or below the Bose-Einstein

i i m, , • i i

t

In terms of number density this means

N(v's of any kind) - (-kT_ 4x (-l) n÷l
"he" _ _=_- 7.65xi027 T .°m "3

n_l

where g - 1 since the helieity has but one value for a given
type of neutrino.



condensation temperature To. The latter quantity_ for a x"

meson, which is the only one to be oonoidered seriously, is

related to the number density by

kT o (MeV) _' (Nz/4 x 1034) 2/3 .

In regions of interest, (i.e. where densities are less than

lO 17 8_/cm 3 and temperatures are less than _ lO 10 OK), the

condensation temperatures, for which _z " _n " _p _ mxc2 or N

i8 comparable to other number densities, are much higher than

1010 OK implying that x''8 may be considered degenerate. Thus,

for Mn - pp _ mo2, negligible numbers of x" are present in the

mixture.

The calculation of equilibrium concentrations proceeds as

follows: for a given temperature the neutron density Nn i8 chosen,

thus fixing Un. Iterative values of Mp are then picked (each

value yielding all the other particle number densities by application

Of the u-equations) until charge neutrality is satisfied. The

only difficulty in this procedure is that the iterative process

i8 graphical and rather exhaustive tables of M vs. N must be

prepared beforehand.

For neutron star abundances the set of elementary particles

given in Table 1 were chosen. Approximate masses, values of

g - 2 x spin + l, and q were taken from Rosenfeld (1964).

No antiparticles were included because the condition M - -5 >> 0

precluded an7 but negligible concentrations being present. The

isospin quadruplet A6 barton (known also as N;/2)was inoluded



Table I

Particle Mass (Uev) g q

n 9_9.6 2 o

P

O
A6

+

A8

++
A8

Ao
y.+,o,-

_+,O,-

1

e

93e.3

1238

z23e

1238

123e

zlz5

i192

1317

2 +1

4 -i

4 o

4 +i

4 +2

2 0

2,2,2 +1,0,-I

2,2 0,-I

2 -I

_" 1o5.7 2 -I

x" 139.6 1 -1

because of its relatively low mass and high value of g.e

Particles of mass greater than_can only be created at densities

greater than 1017 gm/cm _ or at very high temperatures. This is

a moot point, in _ way, since the artificial nature of the non-

interacting particle assumption probably makes itself evident at

densities not too much greater than nuclear (_ 4 x 1014 gm/cm3).

, i

Only two members of this quadruplet were included in the calcu-

lations of Ambartsumyan (1960) and Tsuruta (1964), namely A_
and A_ which they called p_ and n _.

It has since come to my attention that a paper has been

submitted for publication by B. M. Barker, M. S. Bhatia and O.
Szamosi (University of Windsor, Ontario) in which they do a zero
temperature calculation which includes 56 elementary particles.
Their results for densities less than 1017 gm/cm3 do not seem
to differ from mine. They include a convenient table which lists
the densities at which all the particles make their appearance.



In Fi_zre_3 the particle abundances are shown for the

range of densities of interest in neutron stars. These abundances

are taken to be representative of temperatures from sere to

lO 10 OK. At higher temperatures the degenerate condition of

the particles is relaxed and abundances will vary from those

shown (especially at the lowest densities).

For densities up to about 6 x 1014 _/cm 3 the mixture contains

only neutrons, protons and electrons. At 6 x 1014 _a/om 3 _n-_p

approaches the muon rest mass and so that particle makes its

appearance. Beyond_lO 15 8_/om 3 various heavy particles enter

with Z" appearing first. It is interesting to note that these

particles do not enter in order of increasing mass. In the case

of Z= it is necessary to neutralize the positive charge produced

by the increasing proton number density. It is energetically

more economical to do this by producing one Z" rather than one

more proton and two electrons because the proton and electron

Fermi levels are very high. Thus Z" enters before the less

ma88iveA 0 .

Figure_4 shows the run of equilibrium _n and Up with

density. It is this curve which i8 used in the phase space

calculation of the (n,n) _ (n,p,e,v) reactions. This figure

a_so indicates the approximate range of validity, in that calculation,
!

of the assumption that the protons are degenerate. For example,

at a density of,_ 2 x 1014 _/om _ the proton Fermi kinetic ener_r

is about 1.5 MeT indicating that degeneracy is lifted for temperatures

greater than_lO 10 o K (kT_ .8 MeV). The latter is taken as the
0

upper limit on temperatures considered in neutron star calculations.
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For higher temperatures the method used in computing phase space

integrals breaks down.

One additional equilibrium calculation was performed at the

considerably higher temperature of 5.e x 1011 OK (50 MeV kT) at

the suggestion of D. Arnett who, in his thesis, points out the

possibility that the implosion stage of a supernova explosion may

occur at such a temperature. Of interest is the abundance of muons

which give rise to muon neutrino lo_ses. The characteristic time

scale for this emission may be shorter than the hydrodynamic time

scale of implosion and thus would affect the dynamics of the

implosion considerably. Some results of this calculation are

shown in Figures'_5 and _6. As can be seen, the particle

concentrations differ appreciably from the low temperature case.

It will be an interesting exercise for the future to see what

neutrino losses can be expe?ted from such a mixture-provided a

reasonable high temperature neutron star model can be constructed.
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In this

Neutrino LOSS Mechanisms CC._. _-__

we will discuss some neutrino loss mechanisms

which might compete with either the nuclear URCA process or,

under certain conditions, with neutrino emission vi___aaneutron-

neutron scattering. Very little of the work reported is original

but rather consists of extensions of other investigator's results

to domains of higher temperature and densities.

A. Pair Annihilation

In the Feynmann and Gell-Mann (1958) theory of the Fermi

interaction it is assumed that all such interactions have a

universal form and a universal strength. The form is vector-

minus-axial vector (V-A) where it is proposed that the vector part

of the weak interaction current is conserved. This implies that

by including picnic contributions to the current the vector par_

remains constant for nucleons upon renormalization.

We will assume that the Fermi interaction is a point inter-

action (range _ 4 x 10 "14 cm.) between four fermions - with no

intermediate boson. Since the energies with which we are concerned

are considerably less than the multi-BeV mass expected of the

bosch, the latter assumption should serve. Furthermore, we will

restrict the form of the fermlon current to be "maximum parity

An excellent overall survey of neutrino loss mechanisms is given
by Fowler and Hoyle (1964).
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tt viz ,violating,

GZ/2

,_(_,b) -.2_---_- _ 7_(1-_5)b • (_,,_,)

The total interaction current will consist of the terms

(neglecting strange particles)

where the particle symbols represent the appropriate wave functions•

The four fermion interactions arise from the various terms resulting

J* ... (e,'_e)* + (n,,p)* + (p,vp,)* .., (_e,e) + (p,n) + (_p,M).

Thus, the term (e,Ve)(P,n) can represent neutrino capture on

neutrons to give a proton and an electron (diagram a), or

The methods and formalism of BJorken and Drell (1964) will be used

throughout this section. The metric is defined by

q.p.q_p_.%po__._, i.e., diag. g_ - (l,-l,-l,-l), where
x°,x 1 2,x3

( ,_ ) - (t,_,y,,).(1:)70 _= , _ - , where ¢ are the Pauli matrices,
0 - 0

i 0 -

707"7 ° (* hermtian conjugate)

The weak coupling constant is taken to be G - (1.Ol±.O1)xlO'P/m_,
where mp is the proton mass. We will use the units _ - c - i,

with m - 9.11xlO "28 ga - O.511 _eV - (3.86xlO'llcm) "1
e

lO'21eec) -1- (1.288 x



ordinary beta-decay of the neutron (diagram b), etc.

P e-

Ca) (b)

The rest of the cross terms are permutations of the experi-

mentally verified reactions (_M,M)(e,Ve)(_--decay) and

(_ ,M)(n,p)(M" capture). The square terms are not so familiar,

eg., consider (;,v)(_,e), one of whose reactions is

e ÷e _ _ + _

e,/- V,,.
This reaction was first suggested to be of astrophysical importance

by Pontecorvo (1959). It is unlikely that this reaction will be

observed in the laboratory because of the extremely small

probability that the neutrino decay mode will occur rather than
f

straight pair annihilation into photons, since the comparative

rates of decay go as the squared ratio of the weak to electro-

magnetic coupling constants

_aG_ 2 10-21
e

The cross section for pair annihilation has been obtained by

Chiu and Morrison (1960) who state that in the center of mass
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- .

ET is the sum of electron and positron energies (including rest

mass in units of me2), v is their relative velocity and

G2m 2

_o "-_-" 1.5 x 10 -45 c= 2 .

The derivation of this cross section is perhaps the simplest

of the four fermion interactions and is given here in abbreviated

form since it does not seem to appear in the literature.

We shall denote the electron (positron) four-momentum by Pl

"_" -- " .............. " -_ -1 _'_ _2 I"

The matrix element corresponding to (_2,v2)(_l,el) is

.. )] ,

where summation over M is implied. We assume that the electrons

are unpolarized and the final neutrino spins are unobserved.

Hence we average over incident spins and sum over final spins in

computing IMI 2 using the projection operator

" 2m

spins

(The neutrino mass £ is assumed to be non-zero until the end of

the calculation at which point it will be set to zero.) Performing
I

the spin sums and averages we find,



tLl-+

l.lm _ _,.k+.+j+ ,.+,i+.. ,,(1.,5)_" TrL '"2_ 7_(z'75 ) 2=

7.k2+£=+=I ,2m 2£ "

Using elementary properties of the traces of 7-matrices each

trace can be reduced to the form

+

Q

Tr[(+.p2,=)T,(Z-7+)(_.k2*,)._+(Z-++)]
i

.2 TrETv(Z-7++)_._2_.7.k2].

Thus,

I=I2

- Tr[TV757.klTPT.Pl ] Tr[ 7vT"P27_7"k 2]

- Tr[ 7VT.k171_7 o.Pl] Tr[ 7v75 7. p271_ 7.k2]

+ TrE',";,57._,-.,;,'+_,.;to.,+TrE_,,,_,.t,2_,,_,.k2]}

With the aid of the trace theorems _

TrETVT.klT_7.Pl ] Tr[TvT-P27_7.k275] =O

i i i =

BJorken and Drell (1964), p. 262, for example.
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Tr[TVT°klT_7"Pl ] Tr[TvToP27_7-k 2] -

- 32[kl.P 2 k2°P 1 +,kl'k 2 Pl°P2]

Tr[TVY'klTPT°Pl75] Tr[TvT.P271_7.k275] -

- 32[kl'p 2 k2"P 1 - kl'k 2 Pl'P2] ,

we finally arrive at

IMI2 . 2
(2.)2(2_)2 kl'P2k2"pI •

The general expression for the cross section is

e_--_ e3kl e3k2 ,,2_2 (2_)4 e(pl+p2_kl_k2)
I;I (2_)3 (2_)3 s(kl)_(k2)_(Pl)_(P2)

where, the E's are the total energies of the respective particles,

and v is the relative velocity of the electron and positron.

Thus,

eo - _ kl" P:, k2"Pl e3k:l

I;I 2E(kl)2E(k2)2E(Pl)2E(P 2) (2x)3

d3k 2

(2x)3 (2x)46(Pl+P2-kl"k2)"

We now use the integral*

k

See K_ll_n (1964), p. 381, for derivations including the case
where both exit particles h_ve non-sero mass.



where Q - pl+P2. Therefore_

PlaP2_. Ia_" 1_ [m4+3m2(pl"P2)+2(P1"P2)2] '

and

[.,4 +3m2( PZ" P2)+2(Pl ° P2 ) 2] •

In the center o£ mass

2
Pl'P2 " 2EIE2 " m

so that

SS required,

orCc.)- 3,,- (z -z).

where"E T = (EI+E2)/ml -Numerically,

O0 " 3x " ,L2_ ' " 2 ' " '

m2 L_2) m
I

To compute the neutrino ener_ lose rate Lv, Ov(EI+E 2) is

to be weighted by the product of electron and positron number
I

density distributions, and then _tegrated over all incident



momenta, i°e,,

Chiu (1961a)* has recast this expression into the form

+ s(z_)<z2+>+ 7__<z+)-

(in units of 1.88 x 1019 ergs/om3-seo),

where a plus (minus) subscript refers to positrons (electrons),

The various quantities are given in terms of the dimensionless

Fermi integrals**

x2dxS - 1 + exp [pCy-u)]

(En) = I'' _nx2dx+ exp [13(y-u)] "

The relation between the dimensionless chemical potentials

U - M/me 2 for electrons and positrons in equilibrium with radiation

Note that the expression for Go given in this paper (eq, 2) is

incorrect. Numerically, however, his result is correct. See

also Chlu and Stabler (1961) for an earlier attempt at L v.

•• *See Section C for notation and methods of calculation.



ck_c
is (from _, Section D)

u(eleotron) - -u(positron).

For a fixed temperature and N (number density of electrons
o

associated with ions), L is then uniquely determined. Chiu (1961a)
v

has calculated loss rates for ranges of temperature and density

•5 < 79 < 10, 2 x 103 < (P/"e " 1.67 x 10-24. o) < 109 _m/cm3.

I have extended these calculations up to T9 _ 50 and p/M e -

1012 _n/om 3 to serve as comparisons for loss rates computed in

the main body of the thesis. The results are incorporated in

FiBers IUW-I.

To facilitate computation the following expansions were

derived in the same way as those given in-_I___, Sect. Cs

1. "Degenerate" electrons

,,E2)- _(x)[_. •-_ (:l*x2)C4x2*l)• 7"4 (sx6+4x4"x2+Z)7
p2xj(x ) 120xSp4 JCx) .J

2

{_-l> _ _z+ ,2 (.i+x2)iI.2_ (z.x2)ll2.I
" 2 3p"--2" xh(x) + 60p 4 x5 h(x) J '

•- h('-) - g(=) - 2=:3(1.=2)z/2



2. Positrons and "non-degenerate" electrons

n-i LL(n_)2 n_

3xl(np) 
+ (n )2 J ,

(E'l> - ½ _ (-1) n+l exp n_u [X2(n_)

n-1

- Xo(nP) •

B. _lasmon Neutrinos

A well known result from both classical radiation theory and

quantum electrodynamics is that a free photon cannot create

electron-positron pairs because energy and momentum cannot both

be conserved. This also follows from the form of the dispersion

relation w2 < k2o 2 where w ie the photon angular frequency and k is

the wave number.

In a plasma, however, the dielectric constant results in a

dispersion relation for electromagnetic waves of the form

w2 _ u 2 + k2o 2
o

where w is the plasma frequency. Such waves, when quantized,
o

behave as relativistic particles (plasmons) of mass _Uo/C 2 which

possibly can decay into electron-positron or neutrino pairs.

et al (_963) and Inman and Ruderman (1964) have calculatedAdams,
t

the rate of neutrino energy loss due to transverse and longitudinal

plasmon decays.* What follows is a transcription of their results

Zaidi (to be published in Nuovo Cimento) has pointed out that the
latter two references contain an error which has been propagated

through this thesis." As a result, all rates to be derived should be
decreased by a factor of four. See also Inman and Ruderman (1966).



into convenient numerical forml

Define

3.345 xlO'4 (_-P_e)1/2
lib = •

x Tg[I + i.O177xi0-4 '(__)2/311/4 '
ge

7 - 0.1686 T9x ,

with P/"s in _=/o=_

rate is

For transverse plasmon_ the energy loss

L t - 1.228 x 1022 y9 F(x) erge/om3-sec ,

where for x _ 0.5

F(x) 2.40412
z3

+ _ [0.5 In x - 0.._9655]+ 9'_x(ln:x: - 2.8509),

and for x > 0.5 ,

= K2(nx)
F(x)- _ _ .

n-1

For longitudinal plasmons,

L l - 3.15 x 1020 yg(eX-l)'l erge/om3-seo.

C. Photoneutrinos

This process is the scattering of electrons by photons to

I

yield neutrino pairs, i.e._



7 + e'-- e" + v + _ .

The ener_ loss rate has been calculated by Chiu and Stabler (1961)

(with a oorreotion by Hi,us, 1962) in various limits of degeneraoy

to be,

1. Relativistio, non-degenerate (R-ND)

L _---2.51 x 10 8 T_ (lOgloTg+0,6)(p/l_e) srg/om3-sso

2. Non-relativistio, non-degenerate (NR-ND)

8 (p/_e) ,rg,/o,3_ssoL _-- 108 T9

3. Non-relativiqtio, degenerate (Nff-D)

,. " 3.9 _ lO1° _ (p/,,)2/3 srg./o,,,3,....o

4. Relativistio, degqnerate (R-D)

L= 6.3 ,x 10 6 (_-_)T_ (I_ST_)ergs/om'-seo ,

where EF is the eleotron Fermi level.

In the ranges 105 _ (p/_s) _ 1012 , 0.1 _ T9 _ 50 only the
o.

(R-ND) and (R-D) oases are of interest. A useful boundary in

the (p/_e)-T9 plane is the line where the energy loss rates

are equal for the two oases, i.e.,

"_e 2.54( ) =2 x 105 T 9 .



The total loss rate for the combined processes of pair

annihilation, photoneutrino and plasmon decay is shown in

Figure_l. The quantity q* is defined as the loss rate in

ergs/cm3-seo divided by P/_e" The conditions under which one or

the other of the three mechanisms dominate is shown in Figure AII-2.

Loss mechanisms which have net been discussed, and are probably

not as important as the above, ares

i. 7 + 7 _ _ + v , discussed by Hatinyan and Tailosani (1962)_

2. 7 + 7 _ 7 + _ + _ , Van Hieu and Shabalin (1963).

3. 7 + (Z,A) _ (Z,A) + v + _, photon scattering in the field

of a nucleus, Hossnberg (1963).

4. Neutrino bremsstrahlung -- the same process as ordinary

brsmsstrahlung except that neutrino pairs are emitted instead of

photons. This might be important for neutron stars if the density

of scattering centers is high. Rudsrman and Festa are working on

this at present. (From a priTats communication to S. Tsuruta and

A. G. W. Cameron.)

Gell-Mann (1961) has shown that this reaction cannot occur if the
weak interaction is strictly local.
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Abstract

The behavior of a massive star during its final cata-

strophic stages of evolution has been investigated theoreti-

cally, with particular emphasis upon the effect of electron-

type neutrino interactions. The methods of numerical hydro-

dynamics, with coupled energy transfer in the diffusion

approximation, were used. Gravitational collapse initiated

by electron-capture and by thermal disintegration of nuclei

in the stellar center is examined, and the subsequent be-

_---_-- =- .... _ =.... _ itively upon --_-_

the collapse.

As the density and temperature of the collapsing stellar

core increase, the material becomes opaque to electron-type

neutrinos and energy is transferred by these neutrinos to

regions of the star less tightly bound by gravity. Ejection

of the outer layers of the star can result. This phenomena

has been identified with supernovae.

Uncertainty concerning the equation of state of a hot,

dense nucleon gas causes uncertainty in the temperature of

the collapsing matter. This affects the rate of energy trans-

fer by electron-type neutrinos and the rate of energy lost

to the star by muon-type neutrinos.



The effects of general relativity do not appear to become

important in the core until after the ejection of the outer

layers.



Introduction

The behavior of a massive star during its final catastrophic

evolution has been investigated theoretically, with particular

emphasis upon the effect of electron-type neutrino interactions.

Colgate and White (1964) have suggested that the gravitational

collapse of such a star may be partially reversed by a combination

of shock phenomena and energy transfer by neutrino diffusion from

a hot, ultra-dense core. The resulting ejection of hot matter

has been identified with supernovae. The Von Neuman-Richtmeyer

pseudo-viscosity method of numerical hydrodynamics, coupled with

energy transfer in the diffu_iu** _pp_uxi,,atlon, ha_ been ...._= to

investigate this hypothesis.

In section I the physical processes involved in the collapse,

and the gravitational stability of a massive star are discussed.

In particular, the problems of constructing an equation of state

and determining the energy transfer by neutrinos under the extreme

densities and temperatures to be encountered are considered.

Following this, section II develops the initial models and presents

their subsequent histories. Three methods of treating neutrino

energy transfer - (i) no energy loss, (2) energy loss by electron

pair-annihilation and plasmon decay neutrinos, and (3) thermal

diffusion of neutrinos - are presented, and the results contrasted.
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The effect of initial structure upon subsequent history is

examined. The behavior of these models is compared with the work

of Colgate and White (1964).

Section III contains an examination of the implications of

the calculations reported in II, and section IV is a critique of

the methods employed in the calculations. Details of the numerical

techniques of hydrodynamics and energy transfer are presented in

an appendix.



i. Physical Processes

In order to maintain its luminosity a star may derive energy

from two sources: thermonuclear reactions and gravitational

contraction. In the latter case the star converts its gravitational

potential energy into kinetic energy of gas particles on such a

slow time scale that hydrostatic equilibrium is approximately

satisfied. No nuclear fuel can last indefinitely, so one expects

that eventually the star will contract to higher densities. At

these higher densities the Pauli exclusion principle can become

operative and contribute to the pressure. However Chandrasekhar

(1939) has shown that for electrons the maximum mass of a body

supporting itself by degeneracy pressure is less than 1.5 solar

masses.* If the mass of a star is iess than the Chandrasekhar

limit, it may radiate away its remaining thermal energy and settle

down as a white dwarf. For more massive stars the situation is

not so simple.

A massive star spends most of its life burning hydrogen and

helium.** Helium-burning produces oxygen and perhaps some carbon

(Deinzer (1964) ). Fowler and Hoyle (1964) have discussed in

detail the nuclear reactions occurring in subsequent evolution.

* For pure hydrogen the limit is higher, (see Chandrasekhar (1939),

p. 423) but a pure hydrogen star is unrealistic when the Fermi

energy of electrons is higher than the beta-decay energy of

the neutron.

** See Hayashi (1962), Hofmeister (1964), and Stothers (1965).



After carbon-burning (temperature_8xl08 OK) neutrino production

by plasmon decay and electron-positron pair-annihilation robs the

star of significant amounts of energy. This speeds the evolution

of the star. Chiu (1964) has calculated some models of pre-

supernova stars including this effect.

There are at least two mechanisms by which the star can be

robbed of internal energy faster than it can replace the lost energy

by quasi-static gravitational contraction. They are thermal

disintegration of nuclei and electron-capture. When these

mechanisms operate, the star will collapse, falling almost freely

in its own gravitational field. Which process will actually trigge_

the collapse depends on the details of pre-implosion evolution.

A. Thermal Disinteqration of Nuclei

For temperatures greater than T = 4x109 oK and densities the

order of or greater than p = 106 gm/cm 3 a wide variety of nuclear

reactions can occur. A calculation of these rates requires an

accurate knowledge of the initial nuclear composition of the matter,

a large collection of nuclear parameters,* and considerable effort.

It is beyond the scope of this work to justify a pre-supernova

model involving such a calculation.

* See Truran, Hansen, Cameron, and Gilbert (1965), for instance.
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If the reactions are fast enough, the problem may be treated

by the methods of statistical equilibrium. Insofar as the

equation of state is concerned, the only changes of interest are

those which are strongly endoergic or exoergic. The photo-

disintegration of 56Fe matter in the implosion has been discussed

by Fowler and Hoyle (1964). They find that for temperatures

T _ 7.109 OK that the photodisintegration time is t _ 10 -6 second ---

which is no larger than the most restrictive hydrodynamic time

scale. Hoyle and Fowler note that the equilibrium composition for

56Fe matter changes to essentially pure 4He in a region of width

T 4, ixl09 o K
\

about the density-temperature curve corresponding to an equilibrium

concentration of half 56Fe, and half 4He and neutrons, i.e., the curve

39.17

log p = 1.1.62 + 1.5 log T 9 - T 9

where T 9 means temperature in units of one billion degrees,

logarithms are to the base i0 and density _ is in gm/cm 3. This

may be approximated by the expression

T9/6.0 = (p/1.82 x 106 gm/cm3) O'081-

For somewhat higher temperatures photodisintegration of alpha

particles is expected.

4He - 2p + 2n



In this case the transition region is approximated by

T/(12xl09 OK ) = (p/(108 gm/cm 3) )0.13

Now the energy required to produce the reaction

56Fe _ 13 4He + 4n

is

and for

is

Q(Fe,_) = -2.1x 1018 erg/gm

4He _ 2p + 2n

Q(a,np) = -6.8x 1018 erg/gm

These values will be roughly correct even if the composition is

not 56Fe, but some other stable nuclide. Subsequent results will

not depend sensitively upon this choice.

B. Electron-capture

Consider a nucleus (Z,A) which is stable against beta-decay

on earth. It may be a product of some reaction represented by

(I) (Z-I,A) _ (Z,A) + e- + 9.

Under stellar conditions of extreme density, an endothermic

reaction of the form

(2) (Z,A) + e- - (Z-I,A) + v

can occur in which the terrestrially stable nucleus (Z,A) is

induced to capture a continuum electron from the surrounding plasma.
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Bahcall (1964c) has investigated this process and finds that

for allowed decays, the half-life for the process (2) in a

stellar interior is related to the half-life for the decay

(i) on earth by

(T1/2 ) star = (fTl/2) lab
-i

K

where f is the usual function used in the comparative half

life, i.e.,

f(+Z,W) = _ml...ax dp p2 F(+Z,W)

6

and p is electron momentum, W is relativistic electron energy,

q is the neutrino momentum and F(!Z,W) is the Fermi function.

Now

2 2
K = _ dp p q F(Z,W)/(I_e(W-_)/kT)

Pthreshold

(where _ is the relativistic chemical potential) is the appro-

priate generalization of f(+Z,W) for reaction (2). The range

of integration now extends from the electron momentum corre-

sponding to the threshold energy of (2) to all higher energies.

The correct weighing factor for a Fermi-D_rac distribution of

electrons,

-1
(I + exp [ (W-_)/kT]) ,

is included. The integral K will be large compared to f(+Z,W)

when the electron distribution is such that energy levels with

W > W
threshold

for the capture reaction, are well populated. This can occur in



the nondegenerate case when

occur.

be

(3) kT > W
threshold

and in the degenerate case when

(4) W k W

Fermi threshold

Taking Wthreshol d to be the order of nucleon binding energy in

the nuclear potential should give an estimate of the thermodynamic

conditions under which induced electron capture will begin to

If we take the threshold for the electron capture to

W _ 8 MeV,

threshold

then for a nondegenerate gas, the condition (3) implies that the

temperature is

T _ i0 II OK,

but thermal disintegration discussed in the previous section will

have already disrupted the nuclei at much lower temperatures.

i

(4) gives a condition* on the density p

> 10 9 gm/cm 3

e

Using

* The quantity p has its usual astrophysical definition of average

atomic weight per free particle (Ue = A/(Z + I) for a completely
ionized gas).
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Beyond this density nuclei will capture high energy electrons

from the top of the Fermi sea. The alpha particle, 4He, will

be extremely resistent to electron capture because there is

no stable nucleus with Z = I, A = 4, whereas the _ particle

is tightly bound. The threshold for electron capture on 4He

will be of the order of the energy needed to disintegrate

the nucleons, i.e., about 30 MeV for complete disruption,

but the reaction of most importance is probably

4 - 3
He + e - H + n _ _

e

which requires about 21 MeV. A value for the electron Fermi

energy of 30 MeV corresponds to a density of the order of

-- _ i0 IIP 2 x gm/cm 3
U
e

As the density rises, so that the Fermi energy becomes greater

than the threshold energy, the continuum electron capture rates

increase until an assembly composed predominantly of neutrons is

formed.

C. Stability Against Continued Implosion

Once the implosion begins it cannot be stopped until the

pressure is again large enough to provide mechanical support for

the configuration. Chandrasekhar (1939) has shown that the

boundary for mechanical stability of a self-gravitating mass is



the y = 4/3 adiabat. That is, if upon compression the change

in pressure and density of the material can be represented by

y = d(log P)/d(log 0 )

then for y > 4/3 the material is stable, but for ¥ < 4/3 the

material is unstable toward continued contraction.* As particles

become relativistic the relation between energy and momentum

changes from

to

2m

e = pc

in the extreme relativistic case.

for a gas of such particles are

nonrel.

E = 3 PV

2

y = 5/3

The corresponding relations

rel.

E= 3 PV

Y = 4/3

*Actually the criteria are somewhat more complicated, dealing with

pressure averages of _. F. Dyson, "Hydrostatic Instability of

a Star," unpublished.
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where E is the energy density per unit mass, P the pressure and

V = I/p the specific volume. Thus, as the temperature (or the

Fermi energy) increases we expect the effective adiabatic exponent

of the gas,y , to approach four-thirds. At what temperature this

occurs depends upon the rest mass of the gas particles (photons,

having zero rest mass are always relativistic, electrons become

relativistic for T _ 6x10 9 OK, while nucleons require T _ 1.2 x 1013

°K), Large amounts of energy are removed from the star by neutrino

emission. Both the processes of electron-capture and thermal

disintegration of nuclei require large amounts of energy to

_rn_ in hnfh _ this enerav is at least of the order of

nuclear binding energy. In view of these large energy requirements,

the material is expected to become degenerate even if it was not

originally so.

The problem of stability against continued collapse is then

reduced to whether a cold, dense neutron gas can give a pressure

contribution which increases with density faster than Y= 4/3.

From investigation of the propel ties of nuclear matter such a

contribution is found.

D. The Equation of State

At densities of the order of or less than nuclear densities

(p _ 3 x 1014 gm/cm 3) the attractive nuclear potential lowers



the pressure below that expected for a degenerate, noninteracting

gas of fermions. The nuclear potential becomes strongly repulsive

at higher densities, and raises the pressure above that expected

for a noninteracting gas, but the exact details of nuclear potentials

in this range (greater than nuclear density) is not well known.

From the several forms of the nuclear potential discussed by

Tsuruta (1964), it appears that there will be a pressure term of

the form

Y
P_ p

where

y_ 2

These results for the equation of state are based on the assumption

that the nucleons may represent a noninteracting, degenerate gas

of Fermi particles in a com_on potential well.

Bahcall and Wolf (1965) have attempted to determine the effect

of nucleon-nucleon interactions more accurately by using the

"independent-pair" model of Gomes, Walecka and Weisskopf (1958).

This technique is valid only if the nucleons are highly degenerate.

Unfortunately it is necessary to know the equation of state for

nondegenerate and semi-degenerate nucleon matter. In view of the

uncertainties involved in any nuclear equation of state and the

numerical limitations of this investigation, and extremely simple

form for nuclear pressureat high density and temperature was

chosen: The nucleons were assumed to be a gas of noninteracting,



free Fermi particles. This reproduces the correct general

character in the limits of complete degeneracy and of high

temperature, low density. In order to avoid excessive use

of computer time, the equation of state was constructed

from a composite of analytic terms.

In addition to the nucleon pressure terms discussed

above, black-body radiation pressure and electron pressure

(including relativistic degeneracy) were taken into account.

Thus the approximate expression for the pressure is

n n

.4/3 4

+R C_ T + Ke_-- _ + a___T3
e e

where R is the gas constant, the constants K and K are
e n

K
e

1015 -2= 1.201 x dynes cm

K = 5.226 x 109 dynes cm -2
n

-3
if the d_nsity p has units gm cm , T is the temperature,

.th
and the number density of the i--- type of particle (n = neutron,

e = electron) is

P
N _-- N
i _, a

1

where N is Avagadro's number.
a

The number density of neutrons

is negligible before electron capture occurs. Electron-pair
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creation does not affect the equation of state for large electron

number density. The energy density corresponding to this pressure

has the simple form

I pi v

= iYi-l)

where Y = 4/3 for the relativistic particles and Y = 5/3 for

nonrelativistic ones.

Electron capture reactions were accounted for as follows:

Since the expression

n
e

is proportional to the number density of electrons, smoothly

changing _e provides a convenient way to reduce the electron

pressure of the system. When the relativistic electron Fermi

energy Ef,

where P6

E /__61/3

2
m c
e

is density in units of 10 6 gm/cm 3, reaches a given

level, the number density of electrons is held constant until the

degenerate nucleon pressure becomes more important. That this

agrees with other estimates may be seen in Figure (I). Two

parameters are involved: the Fermi energy at which captures are

supposed to occur, and the factor by which the electron number

density is decreased.
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Actually the onset of electron capture reactions is a gradual

process, beginning at densities as low as 109 gm/cm 3. Figure (i)

shows that the Harrison-Wheeler* equation of state gives a

slightly lower pressure than expected from a relativistic electron

gas at densities from about 109 to i0 II gm/cm 3 because of electron

capture. Tsuruta (1964) finds that the equilibrium abundance

peak of zero temperature matter shifts from 56Fe at low density

(_i07 gm/cm 3) to very neutron-rich heavy nuclei at higher density

(_i0 II gm/cm 3) due to electron capture. The effect of this is

to initiate a contraction in a pre-supernova star at much lower

densities than might be expected otherwise. The assumption of a

sharp electron capture threshold is unrealistic, but is probably

a minor source of error. In the calculations to be reported,

electron capture was assumed to occur rapidly when the Fermi

energy was slightly above the 21MeV or so necessary to drive

the reaction

4He

, _ i0 II gm/cm 3that is for p

3H+ e-_ + n

* Harrison, B. K., et al, 1965, chapter I0.



As Figure (i) shows, a zero-temperature body undergoing

quasi-static gravitational contraction will encounter a pressure

deficit at densities above p _ i0 II gm/cm 3. The equation of

state does not compensate for this pressure loss relative to a

Y = 4/3 adiabat until the density is about 1015 gm/cm 3. This is

accomplished here by approximating the complicated equation of

state for nuclear matter by that of a noninteracting non-relativistic

Fermi gas. In the region where the pressure deficit occurs,

i0 II 1015< p < gm/cm 3, the detailed nature of the equation

of state is relatively unimportant because the supernova core is

falling in freely to higher densities and is not affected by the

nucleon pressure contribution. In this region Tsuruta's equation

of state gives pressures between those of the Harrison-Wheeler

and the Salpeter equation of state, except when a nuclear hard-core

term begins to dominate the equation of state. It should be

emphasized that the zero-temperature equation of state is only

a convenient limiting case, and that finite temperature effects

are important in supernovae collapse.

E. Neutrinos and Enerqy Transfer

The effectiveness of a given mechanism for energy transfer

depends on the rate at which energy can be put into the given mode,

and on the speed with which the given mode moves this energy.

Energy transfer in stars is generally accomplished by photon
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diffusion, or in some cases byconvective mass motion or conduction

by degenerate electrons (see Schwarzschild, 1958). Using the

Thomson cross-section for the electron, the photon mean free

path is roughly

photon

NeGth P

cm.

where N e is the electron number density per unit volume, Gth is the

Thomson cross-section, and p is the density in gm/cm 3. For the

core of a star with a central density of, say, 106 gm/cm 3, the time

for a photon to diffuse through even ten kilometers of matter is

T ph.dif. _ AR2 _ i0 years.

_c

The universal theory of weak interactions* of Feynman and Gell-Mann

(1958) predicts a large number of processes that result in the

formation of neutrino-antineutrino pairs. The emission of a

neutrino pair is much less probable than the emission of a photon

so that the process is not generally observable in the laboratory.

Once formed, however, the neutrino pair is virtually certain to

escape from a normal star (p central << i011 gm/cm3)" For temper-

atures less than several billion degrees, the cross-section for

neutrinos and antineutrinos is roughly

so that the mean free path is

10 -44 cm 2 .

neutrino _ 1020

P
cm.

*Or any theory which predicts coupling of terms of the form (_e)(e_).
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which is roughly I00 light years for the density of the sun.

Thus, excluding extreme conditions, the production of neutrinos

acts as an instantaneous local energy sink for the star.

i. Enerqv Loss by Neutrino Escape.

Chiu (1961) has calculated the energy loss rate due to the

process

+
e + e- _ _ + v

for stellar material in the temperature range (0.5 to i0) x 109 OK

and densities (0 to 109 gm/cm3). In much of this range the electrons

are partially degenerate and numerical eveluation of integrals was

necessary. Analytic forms for limiting cases have been presented

by Chiu and Stabler* (]961).

For

and

the energy loss rate is

Q = 4.3 x 1015

mc 2 _< kT

E < kT
Fermi _"

ergs/gm/sec

where p is in gm/cm 3 and T 9 is the.tempeL_ature in units of 109 OK.

* See Ritus (1962) for a numerical correction of the photoneutrino

rates in this paper.
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fhis approximation is inaccurate when temperatures are about

3 _ 109 OK or below, but the energy loss rates are then too small

to affect the hydrodynamic calculation. The approximation is also

invalid when degeneracy is pronounced, but then the plasmon-neutrino

loss rate is larger, so that the numerical error is negligible.

The production of neutrino pairs by coherent electron ex-

citations (transverse plasmons) in a hot, partially degenerate

relativistic plasma has been calculated* bY Adams, Ruderman and

Woo (1963), and extended by Inman and Ruderman (1964). Neutrino-

pair emission by collective electron modes, especially transverse

plasma excitations, is found to be the main mechanism for neutrino

radiation by a dense plasma when electron-positron production is

small either because the temperature is too low or degeneracy

suppresses it. Chiu (1964) gives an analytical approximation

for the plasma neutrino process:

Q = - i.i (T9) 3

where the usual notation is employed.

x < 1

where x is given by

x = 0.237(1 + 0.6413(p6)

if

P6 >> 1

p erg/gm/sec.

This is valid for

2/3) -1/4 1/2

(P6)

Zaidi has recently indicated that this rate is too large by a

factor of 4 (t O be published).
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has units of 106 gm/cm 3. Actually numericalThe density P6

evaluation of the pair annihilation, plasma and photoneutrino

rates by Hansen (1964) indicates that this approximation is

reasonably good (factor of 2) for densities as high as i0 II gm/cm 3

or so if the temperature is T & I0 I0 OK. Again, errors in small

energy-loss rates are negligible from a hydrodynamic point of view.

For temperatures much higher than this the pair annihilation rate

is dominant, so that the approximation is reasonable in the region

in which it is the primary energy loss mechanism.

The plasmon-decay and the pair-annihilation energy loss rates

are of interest for two reasons. First, they may be important

in cooling shock-ejected matter whose density is less than

11Q 4. I0 gm/cm 3 Also, for higher densities other neutrino

processes will probably dominate, but these processes nevertheless

provide a convenient estimate of the minimum possible energy loss

rate which is not plagued by the uncertainties* in the effect of

strong interactions.

2. Neutrino Opacit_ t

The interactions of neutrinos anti antineutrinos in dense matter

have been discussed by Bahcall (1964a), Bahcall and Frautschi (1964b)

and Euwema (1964). Euwema calculates the inhibiting factor for

effects of the exclusion principle on neutrino absorption.

* See Bahcall and Wolf (1965) for example.



Negligible temperature and completely noninteracting particles

which filled all states below the Fermi level and none above, were

assumed. Bahcall and Frautschi have considered neutrino-lepton

scattering and neutrino-nucleon interactions generally. In

particular, Bahcall (1964a) has suggested that neutrino-electron

scattering

I l

_8 + e- _ v,8 + e-

! !

+ e

is the most important neutrino process for energy deposition in the

supernova model of Colgate and White (1964).

a) Nondeqenerate qas.

For a nondegenerate gas of electrons, the total cross-section

averaged over the initial electron distribution is

(w-w)/kTT_ 1
(O)w,p = [ 4 3he (_c) 37 -1 .r d3p _i- + e _ _(p_,W_)

where G(p_,we) for neutrino-electron scattering is

_(p_,we) = _o(P_-W_)2/(l + 2p_-w_)

and for antineutrino electron scattering is

(P_'®_) = _o (6P_) [i -

where n
e

(i + 2p_-w_) -3]

is the electron number density per unit volume, p is the

electron momentum, W the total electron energy, p_ the dimensionless



four-mumentum of the electron, w the corresponding four-momentum

for the neutrino, and _ the chemical potential of the electrons.

The constant 0o is

a = 4 _ -4 G 2

o -- (_eC) (m--_c)e

1.7 x 10 -44 cm 2.

In the case kT >> meC2, the thermal motion of the electrons produces

a large center-of-mass energy and hence causes the cross-section

to exceed greatly the cross-sections for electrons at rest. In

2
this limit Bahcall finds, for neutrino energies Ev >> m c , that

e

2

(a) (,_,T _ 3.2 (kT/meC) _o____
z

for the neutrino, and for the antineutrino

O" W O" W

O, 0

2 6

Bahcall gives the following form for the neutrino energy loss

per scatter

my.
1

w 2 -
wm c

e

where w is the dimensionless neutrino energy and the prime refers

to the quantity after collision. This approximation requires

w >> 1 and kT >> m c _
e

For sufficiently high electron temperatures, the neutrinos gain

more energy per collision on the average than they lose.



b) Deqenerate Gas.

In a degenerate electron gas both the initial electron

distribution and the prior occupation of final electron states

must be considered. Bahcall (1964a) gives the general expres-

sion for neutrino-electron scattering as

= ao[4_3
3 -2

W 4-_'_L ne _ _) ]
m c
e

s(c)[1- s(c')](Pi w') (4) - P_-W_ )1(P +W ' '

where e is the dimensionless electron total energy and the

other notation is as before, except for

S(x) _ [i + exp ([x-_]/kT)]
-i

where _ is the electron chemical potential. For a completely

degenerate gas,

S(e) = 1 for ¢ < Ef

= 0 for c > E f

where E is the total Fermi energy.

2
o

_(w,,_f)-_ _ o
G E w
o f

Bahcall estimates

W<<Ef

W>>Ef

and for antineutrino scattering the results are multiplied

by 1/3.

The results of Bahcall and Frautschi (1964b) indicate

that for

N > 10 -2 N
e n



that is, for the electron number density more than i% of the

nucleon number density, neutrino-nucleon scattering is less than

neutrino-electron scattering, andwill be neglected.

The situation is not clear concerning neutrino absorption by

nucleons. In the "low" density domain (p < 3xlO 14 gm/cm 3) nucleons

not bound in nuclei will display the cross-section

2
for neutrinos with energy much larger than meC _ 0.5 MeV. For

lower energies the behavior is more complicated, with the reaction

L + p - n + e+

having a thresnolG while the reaction

v + n _p + e-

does not. For densities greater than or the order of nuclear

density (p _ lXI014 gm/cm 3) the previously mentioned uncertainty

with the equation of state may affect the neutrino absorption

cross-section by changing the threshold energy or by reducing the

phase space available to nucleons in the exit channel. In any case,

the extinction cross-section for neutrinos is at least as large as

that predicted by neutrino-electron scattering alone, and may be

larger. If the number density of electrons becomes considerably

less than that of nucleons, then the neutrino opacity of the material

cannot be represented, even approximately, without knowing the

neutrino-nucleon interaction cross-sections. Thus the equation of



state problem is again encountered. The opacities used in the

calculations presented here are due to neutrino-electron scattering.

3. Enerqy Transfer by Neutrinos.

In this investigation neutrinos were assumed to transfer energy

by thermal diffusion. Although tested numerical techniques for

time-dependent transfer problems are available (Richtmyer, 1957)

it appears that any reasonably accurate transport treatment requires

too much machine time for an exploratory calculation. In addition,

other approximations, such as neglect of general relativity, make

a detailed study of the coupled problem inappropriate at this time.

Consequently energy transfer by neutrinos was treated in the thermal

diffusion approximation* with the hope that the accuracy would be .

on the level attained by other aspects of the calculation.

The thermal diffusion approximation assumes that the diffusing

energy carriers (usually photons, but in this case electron-type

neutrinos and their anti-particles) are in thermal equilibrium with

the medium through which they move. The anisotropy which drives

the energy transfer is assumed to be a perturbation on a generally

isotropic distribution of carriers. The assumption of thermal

equilibrium avoids detailed consideration of the processes of

neutrino formation, a neglect which greatly simplifies the problem.

The approach in this section follows that of Frank-Kamenetskii

(1962) for photons.
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The first law of thermodynamics can now be expressed as

dE= (_ - --_)

_M

dt - PdV

where E is energy density, s the rate at which thermal energy is

added to the medium, P is the pressure, and V is the specific volume.

Assuming spherical geometry, the mass M satisfies

2
dM = 4 _ p r d r

where

the equation

p = I/V is the density and r is the radius of the spherical

element under consideration. The luminosity L is given by the

usual expression

L = (4,Tr2) 2 __C d(T4)

3K dM

where a is the radiation constant, c the velocity of light, T the

temperature and K the Rosseland mean opacity

K=l

where _ is the corresponding mean free path. Notice that

for simplicity we have assumed that the neutrino and anti-

neutrinos may be described by a single "black-body" Fermi

gas, that is, the chemical potentials of the neutrinos and

antineutrinos are zero. Using Bahcall's (1964) limiting

forms for the electron-neutrino (antineutrino) cross-sections,

the Rosseland mean opacities can be evaluated analytically*

* L.D. Landau and E.M. Lifshitz (1958) Statistical Physics.



for a "black-body" Fermi distribution. However it is

sufficiently accurate to replace the neutrino energy by

an average value

so that

< _ > _ 3kT

0K = N _ (3kT) 2
e o

where the quantities have been defined previously.

It is interesting to note that the integrated neutrino-

electron scattering cross-section for a degenerate electron

gas is nonzero even if the neutrino energy w is less than

the electron Fermi energy ef,

2
< _ > _ o w for w << c-

o

This means that there is no completely transparent window

even for low energy neutrinos (me c2 << w << ef)- Very low

energy neutrinos (w _ m c 2) are expected to transfer little
e

energy on short time scales.

The approximation of thermally diffusing neutrinos

will be valid only if the neutrino mean free path is shorter

than the distance in which the macroscopic variables change.

That this condition may be satisfied can be seen as follows.

For a density greater than

I0 IIp _ gm/cm 3

|

9



the electron Fermi energy never falls below about 30 MeV, so

that the electron number density is at least N _ 1035 cm -3.
e

Detailed numerical calculations show that the macroscopic

variables change little over distances of the order of

6

A X < 2x10 cm.

If the mean free path for a neutrino must satisfy the relation

then the average neutrino energy must be

> (A X N GO)-½ 8 MeV
e

If a thermal distribution is assumed, _ _ 3kT, so that the

temperature must be greater than

T _ 36 x 109 °K.

Temperatures far in excess of this are encountered. Eventually

this condition breaks down at lower densities, and a "luminous

surface" for neutrinos is formed, beyond which the neutrinos

almost certainly escape the star without interaction. In this

region the energy deposited by the incident neutrino flux and

that lost by neutrinos escaping were taken into account in

determining the boundary condition. Because of the rapid

transition from neutrino-opaque to neutrino-transparent condition,

the calculation appears to be insensitive to exact form used.



III. Hydrodynamic Calculations of Stellar Collapse.

A. Initial Models.

Models for stars just prior to supernova implosion have

been suggested by Fowler and Hoyle, (1964), and by Chiu (1964).

It appears that the essential differences are: (I) Chiu's

model is much more centrally condensed, with a higher central

density, and (2) because the central temperatures are roughly

the same, the center of Chiu's model lies on a lower adiabat.

The model suggested by chiu has electron degeneracy in the core

while that of Fowler and Hoyle is nondegenerate, at least

until endoergic nuclear reactions become significant. Figures

(2) and (3) illustrate the two approximate models chosen to

reproduce these characteristics. An n = 3 polytrope, that is,

a gravitating gas sphere in hydrostatic equilibrium for which

the pressure and density are related by

p -- p4/3

was chosen to represent the Fowler-Hoyle model. The mass was

ten times that of the sun and the initial radius was R : 1010cm.

The Chiu model was approximated by an isothermal core

of 1.435 M G and a y = 5/3 envelope giving a total mass of

1.952 M®. This model might correspond to the centrally-

condensed core of a more massive star with giant structure,
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the extensive envelope being neglected. Although this is not

as centrally condensed as the model with a positive temperature

gradient in the core which Chiu first suggested, it does give

a highly condensed structure and is in sufficient contrast
I

with the Fowler-Hoyle model.

B. Dynamical History of i0_ Pre-supernova Models of

Polytropic Structure.

In order to clarify the effects of neutrino energy

transfer, the following models are to be presented:

(i) the "no-neutrino" model in which all neutrino energy

transfer is ignored, (2) "neutrino sink" model in which

all neutrinos, once formed, are assumed to escape the star

without interaction, (3) "neutrino diffusion" model in which

diffusive energy transfer by neutrinos at high densities and

temperatures may occur. The choice of a 10M polytrope of
®

index 3 allowed comparison with the results of Colgate and

White (1964). The initial evolution of all three models

(10M_ polytropes of index 3), was identical, following the

path ABC in Figure (4); consequently this part of the

evolution will be discussed only once.

Figure (4) illustrates the history of one representative

zone, (M r = 1.5_) falling into the core, of the models just

discussed. The contraction was initiated by introducing a
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small energy sink to evolve the model. This was done by

uniformly increasing the combination pair-annihilation and

plasmon neutrino rates throughout the model until it con-

tracted to the collapse point, slow enough to follow a

y = 4/3 adiabat more or less, but fast enough to do so

without using too much computing time. The stability condi-

tion _ppendix equation C. i) on the hydrodynamic difference

equations is unduly restrictive for the quasi-static

evolution of hydrostatic models, so that this accelerated

contraction was necessary. So long as the configuration

?

follows the correct path in the pressure-temperature plane

for pre-collapse, and at the point of collapse has negligible

kinetic energy, this approximation is valid. This part of the

evolution carried the zone along the path AB.

The evolution along the path BC represents the evolution

of the material through the Fe-He phase change. At point B

energy is removed by endoergic nuclear reactions so that the

zones begin to fall inward rapidly. At point C the conversion

of the iron-peak nuclei to helium and nucleons is nearly

complete. In order to keep the amount of data manageable,

quantities were printed out every 200 time cycles of the

hydrodynamic calculation. The evolution was so rapid at this



point that the accurate position at which the transition was

completed is not known, but it is probably as drawn in Figure _).

I. "No-neutrino" model.

The evolution from C to D in Figure _4) may be explained

as follows. The implosion proceeds until the nucleon terms

in the equation of state provide sufficient pressure to halt

the infalling material. When neutrino energy loss is neglected,

the following artificial situation develops. When the electron

Fermi energy rises sufficiently to cause inverse beta-decay,

the number density of electrons does not rise much with an

increase in density, and hence the pressure contribution due

to electrons does not rise either. The free nucleons which

are formed do contribute an ideal gas term to the pressure

(in this model). Since neutrino energy loss is neglected in

this model, the material falling upon the initial 0.5M_ core

is shock-heated to high temperatures.

The path CD describes the thermodynamic history of the

zone as it encounters this stationary core shock. The kinetic

energy which the zone gained upon falling to this density

was converted to thermal energy of an ideal nucleon gas. This

may be seen from the following estimates:



Change in potential energy upon

contraction

Change in thermal energy necessary

to support the core material

hydrostatically

Energy lost in photodisintegration

of nuclei

-5.3xi052 ergs

4.2xi052 ,,

1.0xl052 ,,

4/3

density by

P = P (P---)

o Po

Energy left to form an over-

pressure and mass ejection _ 0.1xl052 "

The energy available to form an overpressure is negligible as

far as an explosion of the model is concerned. In fact the

core continued %o adjust itself as overlying layers continued

to rain down, and the implosion was not reversed. During this

period the zone plotted in Figure _ evolved along path DE.

The calculation was terminated when a core of about three

solar masseswas formed; at this point there was no indication

of any possibility of mass ejection. Although the histories

of only "representative" zones are given in the Figures,

statements of results (as here with the absence of mass

ejection) are based on examination of the behavior of all

zones in the model.

During a homologous contraction (or expansion) every mass

zone of hydrostatic gas mass has its pressure related to its
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where Po is the pressure and Po the density of this zone for

some reference configuration. This relationship defines the

path in the pressure-density plane upon which the mass zone

must lie for hydrostatic configurations (which are homologous

to the reference configuration). When the gravitational

acceleration

g (r) - G M (r)
r 2

is linear in the radius _ a gas sphere in free-fall contracts

homologously. This occurs when

S(r) _ r 3

or equivalently, when the density is constant.

p = constant.

For a density which decreases with radius, the outer zones

of the gas sphere must be accelerated less than would be

necessary for homologous contraction, and "left behind"

The innermost zones of a gas cloud freely falling under its

own gravity tend to fall homologously, leaving behind those

4/3
zones which do not. Thus the relation P _ p defines a

locus of hydrostatic configurations for the imploding core

(and for the whole star model in so far as the homology

requirement is satisfied). This curve in the P-p plane, and

its corresponding curve in the p-T plane, define a sort of
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stability boundary, such that if the pressure predicted by this

relation is greater than the model actually has for a given

density, then the core is unstable toward contraction and

cannot be static. The dashed line in Figure (4) defines such

a boundary. Note that the evolutionary path of the "no-

neutrino" model does not cross this line, although at point

E the zone shown is a part of a quasi-static core of 3Me

and the stability boundary is approached. By this time the

structure of the core is by no means a scaled-down version of

the structure of the same matter in the initial hydrostatic

model. _ithougn the homology requirement for the use of the

stability boundary is violated, in fact there is no evidence

that any significant reversal of implosion or mass ejection

is likely. For smaller mass cores, it will be seen that the

stability boundary concept is useful.

2. "Neutrino Sink" Model.

The"neutrino sink" model differs from the "no-neutrino"

model just described through the inclusion of an energy loss

rate of the form:

= _ . 1015 (T9)9 1 1 (T9 3) P erg/gm/secQ 4 3 x _ -

This is the sum of approximate forms for electron pair-

annihilation and plasmon decay neutrino loss processes



lq -

mentioned earlier. It is not maintained that this expression

is the correct form to use. Quite the contrary, other

processes such as the URCA process for nucleons are probably

more important. What is important is that the neutrino

energy production rate is almost certainly as large as this.

If it is assumed arbitrarily that all neutrinos, once formed,

escape from the model, then this energy loss rate is a lower

limit.

What is the purpose of such an artificial model? Simply

this: it shows that for this comparatively mild energy loss

rate, there is no reversal of implosion, no mass ejection,

but just the accumulation of a degenerate core of ever-

increasing size when neutrino diffusion is neglected. This

is shown in Figure (4), where this "neutrino sink" model

follows the path CFG. In the segment CF the graphed zone

encounters a stationary core shock, in which the infalling

zones are slowed and become part of the core. For this model,

the neutrino energy loss rate keeps the temperature much

lower than was the case for the "no-neutrino" model. This

causes the core to form at a much higher density than was

the case in the "no-neutrino" model. This means that more

gravitational potential energy has been released, but is
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lost from the star. The continued loss of energy allows

the core to evolve slowly to higher densities, along the

path FG. The irregularities in the path along FG correspond

to oscillations* of the core, perturbed by the continued

infall of matter. The matter is quite degenerate at this

point, so that temperature has little effect on the equation

of state. Notice that the evolutionary path CFG never comes

near the "stability boundary".

3. "Neutrino Diffusion" Model.

Neutrino opacity and the approximations involved in the

In this model the possibility of energy transfer by the

diffusion of neutrinos is considered. It should be emphasized _

that the neutrinos were assumed to be in thermal equilibrium

with the other particles in order to avoid a kinematic

calculation,

The temperatures shown in Figure (4) are unreasonably

high because of the approximate nature of the equation of

state. In particular, the thermal contribution of the

nucleons to the pressure was underestimated. The neutrino

opacity depends sensitively upon the average neutrino energy,

These oscillations may be due to the finite size of the

mass zones as well as to the excitation of actual physical

oscillations.



which depends upon the temperature. Because of this over-

estimate of the temperature, the collapse of a model using

the electron-neutrino scattering opacity behaved much like

the previously discussed "no-neutrino" model, that is, a hot

corewas formed, but there was no mass ejection. In order

to examine the effects of neutrino energy transfer, the

opacity in the core was kept low enough so that the energy

transfer time scale was of the order of the hydrodynamic

time scale. This affects only the zones of hiqher density,

> 1012 gm/cm 3,

so that opacity in the crucial reqion in which the infall

of the matter is reversed, is just that for neutrino-electron

scattering, with average neutrino energy E _ 3kT. A report

on investigation of the validity of this assumption for the

opacity at high densities is currently being prepared for

publication.

The "neutrino diffusion" model was calculated in

exactly the same manner as the "neutrino sink" model until

the neutrino mean free path became short compared with the

dimension of the star. At this point the transfer of energy

by neutrino diffusion was calculated, and some results are

indicated in Figure (4). The path CD is identical with the
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"no-neutrino" case, but the temperature continues to rise

rapidly as DH shows.

That this shock heating is more pronounced than in the

"no-neutrino" model is quite important. Why this is the

case may be seen as follows. Neutrino diffusion removes

energy from the core. Before the neutrino diffusion is

initiated, neutrinos are unhindered as they escape the core,

again removing energy. This loss of energy prevents the

temperature from rising rapidly, so that it is nucleon

degeneracy pressure rather than thermal pressure which halts

the _nfall of the core. This means that the core will have

a much greater density than in the case of the "no-neutrino"

model, which in turn implies that more potential energy

is released by the contraction. Hence more energy is

available for expelling matter.

The situation is now unstable in the following sense.

If the infalling matter supplies kinetic energy to the core

faster than this energy can be removed by neutrino diffusion,

the temperature will rise. Because the neutrino interaction

cross-sections are roughly proportional to the square of

the neutrino energy, and because at higher temperatures

neutrinos are formed with higher energies, the opacity



increases. The transfer of energy by neutrinos then decreases,

and the temperature rises still more. Thus the medium may

become opaque if the inflow of kinetic energy is sufficiently

high.

The greater potential energy released in the "neutrino

diffusion" model is now available for reversing the implosion

of the outer layers. A neutrino diffusion wave sweeps

out of the core, leaving the matter behind it opaque. The

zone shown in Figure (4) is heated so that the path DH lies

well above the stability boundary. Along the path HKL, this

zone falls into the core. The path KL shows the core adjusting

itself while overlying matter is ejected. Figure (5) shows

the curve already shown on Figure (4) as CDFfiKL but is now

labeled MNOP. The new curve on Figure (5), DEF, corresponds

to the zone with an interior mass

=20M GM r

and which is ejected from the star. The path DE corresponds

to the heating of the zone by the neutrino diffusion shock

wave, and EF is the subsequent expansion of the zone as it

leaves the star. The remnant core mass was 1.8 M®.

C. Comparison With the Results of Colqate and White.

Although the hydrodynamics of supernova envelopes has
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received much attention, the only previously published

investigations (of which the author is aware) of the initial

instability and subsequent dynamical history of supernova

interiors are those of Colgate and his collaborators. A

review of these investigations by Colgate and White (1964)

describes some of their more recent results and is the primary

source for the following description of their work. In

particular, the evolution of type II supernova models was

followed by means of a numerical hydrodynamic computer code

from the onset of gravitational collapse to the reversal

of the infall of the core (due to terms in the equation of

state corresponding to a nucleon hard-core potential). The

loss of neutrinos emitted in inverse beta-decays cools

the core during implosion. This loss rate is approximated

by a simple analytic form; a more exact analysis would

involve the evaluation of Fermi-Dirac integrals because the

material becomes degenerate. A partial deposition of this

neutrino flux in the stellar envelope and the shock wave

reflected upon the formation of a neutron star core provide

sufficient energy to eject _ 8_I of the mass of a i0 solar

mass star. To simulate the emission and deposition of neutrinos

from the shock wave formed by the infalling material raining
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down upon the quasi-static core, half of the emitted energy

was deposited in the matter external to the core shock.

This deposition was initiated only when the core shock was

formed and was turned off when the rarefaction due to ex-

pansion terminated the core shock. The time-dependent

energy sink term, integrated over the core, is

'o k ---_ dM
dt

where the factor in parenthesis is just an analytic

approximation to the inverse beta-decay neutrino loss rate, i,e.

dE 513
= - 0.i T p erg/gm/sec

dt

where p is the density in grams/cm 3 and T the temperature

in KeV. The rate of neutrino energy deposition that was

used, in units of ergs/gm/sec, is

dE _ _K

_t-_ deposited 4_r 2

_r

exp (-K I_ p ar)

shock

for

and where

r _ rshoc k

K = In 2/(Fr p dr
shock
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The test for initial equilibrium proceeded for a real time of

30 seconds for a 10Me.polytrope of index 3 taken to be the

model of a pre-supernova star. This model was inspired by

considerations of Fowler and Hoyle (1964). The instability

was initiated by removing i% of the internal energy. The

core formed cold with 57;_ of the mass of the star; after the

implosion was re_ersed in the innermost mass zones a shock

fol'med and neutl in.:_ depositicn_ of energy was initiated. In

this case 2M,-, accumulated in the core before sufficient

heat was deposited to reverse the implosion of the outer

layers and create an explosion.

Colgate and White (1964) also discuss some calculations

involving initial models of 2.0 and 1.5 solar masses. These

models evolved on such a low adiabat that, rather than pass

through Fe-He phase transition, they were brought to dynamic

implosion by rapid electron capture (inverse beta-decay) at

a density above 2x10 II gm/cm 3. The subsequent core formation,

shock wave, neutrino emission and deposition, and finally

explosion followed as in the IOM® case. The expansion

velocities and residual core mass were lower, but not

drastically so.

Figure (6) compares the result of the "neutrino diffusion"
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model to the results of Colgate and White (1964). Although

the data for the plot of Colgate's model were taken somewhat

crudely from graphs, there seem to be three differences.

This first concerns the Fe-He phase change region BCD which

lies on a lower curve for the diffusion model. This does

not affect the dynamics much since both models are in free-

fall at this point. Considering the widely different methods

used in treating this phenomenon, the difference in the two

paths is not surprising. The second point is that Colgate's

sudden heating (path DE and MN in the diffusion model) seems

to occur at lower densities. This is thought to be attributable

to Colgate's technique of depositing energy. The last difference

is the rapid cooling of the core as shown by Colgate's model.

Colgate's energy transfer technique probably is inaccurate

at this point; this cooling occurs after the mass ejection

so that its effect upon other aspects of the supernova

phenomena is small. Also, the diffusion approximation will

incorrectly predict the energy loss rate as the distribution

function for neutrinos departs from its form for thermal

equilibrium. The problem of core cooling would be properly

handled only by a detailed transfer calculation.



D. Effect of Pre-collapse Structure.

Figure (7) illustrates the history of two representative

zones of the centrally-condensed pre-supernova model described

previously. This model was evolved slowly along a path

p _ T 3

until electron capture instigated collapse. This phase,

similar to the evolution of the 10MQ polytrope model before

the Fe-He phase transition, is shown in Figure (7) as the

paths AB and MN. By the time these zones had reached the

vicinity of points B and N, the core had "bounced" and the

neutrino diffusion wave was moving outward.

The effect of this diffusion "wave" may be seen in

Figure (7). Consider the zone with 0.98 M O underneath it

first. Along path NP there is a wiggle which was caused

by initiating the diffusion calculation and has no significance.

During this time the diffusion wave has not yet reached the

zone. Path PQ shows the heating of this zone as it, falling

in, encounters the diffusion wave sweeping outward. During

the time the zone moves from Q to R it is inside the

neutrino emitting surface. It falls on the core at point R,

and evolves slowly from this point on. Further evolution is

due to "slow" energy loss by neutrino diffusion (the time
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involved between R and T is t _ i0

The ejected zone (Mr = 1.48 _)

sec).

encounters a combina-

tion of shock heating andneutrino diffusive heating along

the path BC. At C, the peak temperature for this zone,

expansion begins. Along CD there is some heating due to

acceleration of lower zones, but along path DE the pair-

annihilation neutrino energy losses make the path slightly

T 3
steeper than p . At point E, the thermally decomposed

nuclei begin to recombine by exoergic reactions. This

causes the temperature to drop off more slowly along path

EF. At this point the calculation was terminated.

The similarities and differences in the two structur-

ally different models are summarized in Table I. The

"velocity of ejected matter" quoted in Table I means the

average velocity of that matter behind the ejection shock

wave at the conclusion of the calculation. The velocity

corresponding to the observed expansion velocities of

supernova remnants should be less because an envelope of

several solar masses still lies outside the ejection shock.

Extension of these calculations to this asymptotic ejection

velocity is contemplated.

The more violent ejection of matter from the centrally
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condensed model is to some extent due to nuclear recombi-

nation late in the expansion.

striking than the differences.

The similarities are more

These two widely differing

models, brought to collapse by different mechanisms, never-

theless have surprisingly similar characteristics. The

remnant core mass seems to be higher for the less condensed

model; this might be expected because the mass of the sphere

inside which the gravitational acceleration,

GS(r)
g(r) =

2
r

is nearly linear, is smaller in the more condensed model.

This determines the mass of the material which halts its

contraction as a unit; this material collapses approximately

as a uniform density sphere would.

E. Comparison of Calculations and Observations.

Because of the low frequency of occurrence of supernova

outbursts (about 1/century/galaxy) observational information

is meager. Zwicky (1956) gives a history of supernova

observations. More recent accounts by Shklovski (1960)

and Minkowski (1964) make it reasonable to identify type II

supernovae with the catastrophic disintegration of a massive

* The polytrope model was not followed this far.
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star (M>>Mo). Table II contains a summary of some character-

istic properties of supernovae type II. Details concerning

the optical spectra and light curves, which are not investigated

here, may be found in the references mentioned above.

Comparing Tables I and II, it will be seen that there is

reasonable agreement between the observational evidence and

theoretical predictions. The visual magnitude expected from

the theoretical models has not been estimated, but the kinetic

energy of ejected mass is appropriate. The velocity of ejec-

tion appears larger than observed, but in fact the asymptotic

value of the velocity will be lower, especially if the star has

an extensive envelope as has been assumed. This comment applies

to the condensed model, in particular, which is envisaged as

having a large envelope.

IV. Interpretation of the Results of the Model Calculations.

A. Peak Temperature and Muon Neutrino Energy Loss. Muon

neutrinos do not have the same interaction cross-sections as

electron neutrinos. Unfortunately the opacity for mu neutrinos

in a hot, dense medium like a supernova core is not as well in-

vestigated as for electron neutrinos. It appears that neutrino

production bymuon-pair annihilation will dominate production

from simple muon decay, for higher temperatures at least, as will

be shown by the following argument.

Some rough estimates of the muon neutrino energy loss rates

may be made as follows. The number density of fermion pairs,



neglecting any decay modes, is given by

2 ,_ d 3

3 r P±
O 1 + exp [ (e+ +__)/kT]

Assume that the muons are nondegenerate and that the number

densities of and _ are equal Then, since

exp [(_+ +__)/kt >>i

where the maximum of the integrand occurs, then

2
where N is the number density of muon pairs, mc

P

rest energy of the muon, and

is the

o0

f(_) = r exp [-A(I+x 2) 1/2] x 2 dx

o

_ w

2
mc

kT

For large 8, that is, kT <<mc 2,

f (8 )_V:_/2

-8
e

83/2

so that

1038 -8
N _-- _e

p 3.2 8_/2

The rate of neutrino energy loss at high enough temperatures

by muon decay is roughly

- 2N _/_T)eru/um/sec
P

* Chiu and Stabler (1961) present this approximation for
electrons.



where _ is some average energ_ of the emitted neutrino, p

the matter density, and T the half life of the muon.

Assuming equipartition of energy, _ might be of the order

of 35 MeV.

Using the same approximations of nondegeneracy and

2
kT << mc , Chiu and Stabler give the approximate pair

annihilation energy loss rate

T93 e -(2meC2/kT)

§ = - 4.8 x 1018 -- ergs/gm/sec
e p

Correcting this for the heavier mass muon,

9

e e

_3 x 1032 T93

P
e

- (2400/T9)

Neglecting the effect of muon decay on the number of

muon pairs formed in equilibrium with radiation may be

justified as follows. The characteristic time for muon

2

2 x 10 -6 seconds. Taking kT << m c the muon pairdeacy is

annihilation cross-section has roughly the same magnitude as

2

_i0 -29 cm 2



,l.lo

So that the mean reaction time is

1
T

r H J _'

which for T 9 = 120 gives

I-

so that

-13
-. i0 see

r

and this implies that muo,_ ,]ec'_:r"_1oes n,,t Ir'_aLl..7 alter

the muon number density. Some ,,stimates foi: t:be energy

loss rates by muon type neutrinos aro ,jJ.v:m J n Table III.

The energy loss rates have units erg./c[m/sec and are

all evaluated at a density of 1012 gm/cm 3. The relaxa-

tion times for these rates, if they proceed unimpeded

are given in Table IV.



In the last case the energy loss by neutrinos emitted

by muon decay is dominant, but the time scale for cooling

is then longer than the characteristic collapse and mass

ejection time scale. From these rough estimates it might

be expected that the temperatures for the n=3 polytrope

model, Figure (5), are artificially high. The muon-

neutrino energy loss is probably not so large for the

isothermal model. It is not convincing to estimate what

effect muon neutrinos will play in supernova explosions

without a careful analysis of all possible reactions,

both for neutrino production and neutrino opacity, and a

careful estimate of the temperature. It does appear that

larger remnant cores might be expected with the inclusion

of muon-type neutrino energy loss, but little more can be

said at this time.

B. Electron Neutrino Luminosity and Detectability.

The immense energy radiated by neutrinos that the previous

models predict, and the high temperature of the emission

surface, suggest that it might be possible to detect super-

,

novas by their neutrino flux. Dr. Raymond Davis, Jr. of

* R. Davis, Jr. (1965).
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Brookhaven has kindly provided information about his detector

with which to evaluate this possibility.

If a detector contains N absorbers, then the fraction of

the total integrated neutrino flux absorbed in the detector

is

No
f --

2
4nR

where o is the interaction cross-section and R is the dis-

tance of the source. The total integrated flux is roughly

Etot.
F=

3kT

where Etot. is the total energy emitted in the form of

neutrinos (only electron neutrinos are considered because

of the uncertainty in the muon reaction rates), and T is the

temperature of the zone just inside the neutrino emission

surface.

For kT _ I0 MeV, and

1053
Eto t . ergs

1030 C137N _ 2 x atoms

10-41 2o_7 x cm ,

where the cross'section is for the reaction

C137 - A37M + = e + ,



- Z_

and for a minimum detectable signal of i00 counts,

R _ 1.5 x 1022 cm

5 kpc.

the maximum source distance is 5 kiloparsecs. According

to Allen , the diameter of the Galaxy is

D _ 25 kpc.

Recalling the supernova rate quoted earlier, one per century

per galaxy, it appears _at no burst of electro n neutrinos

is likely to have produced a detectable signal since suit-

able detectors have been operating.

C. General Relativity and Core Collapse.

In order to check the neglect of general relativity,

the Schwarzschild radius

2GM i06<_>
r - _ 0.3 x cm
s 2

C

is compared to the radius of the dense core.

Condensed Model

r /r core 0.22
S

n = 3 polytrope model

0.38

As anticipated the general relativistic effects are becoming

important, especially for the n = 3 polytrope model. These

effects will be more pronounced in the core. The mass

ejection, occurring before such high densities are reached

* Allen (1963), p. 267.



(rs/rcore for the n = 3 polytrope is then only _ 0.16), will

be less sensitive to this effect. However, the bounce point

for the core collapse, where the infall is halted, is some-

what dependent on both the nuclear equation of state and the

temperature of the infalling matter. Careful investigation

with general relativistic hydrodynamic equations is needed

to confirm that neglect of general relativity is reasonable

until after mass ejection.

V. Critique of Calculational Method.

Approximating the transfer of energy by neutrinos by a

model of diffusing neutrinos in local thermodynamic equilib-

rium is probably correct in a rough sense, but while it may

be on firmer theoretical ground than the intuitive approach

of Colgate and White (1964), it leaves much to be desired,

On the other hand, the solution of a transport equation

coupled with hydrodynamic motion poses extremely difficult

computational problems.

The shock width in Figure (5), path MN, and in Figure

(7), path PQ, stretches over a density range of more than

a power of ten. Direct examination of the numerical

results of the calculation reveal that in general the

width of the shock zone is smeared over too wide a



region due to the lack of an adequately fine zoning mesh.

Unfortunately, the present generation of computers is too

slow to make the use of models with more zones feasible,

The computing time goes as the square of the number of

mass zones in the model, so that this limitation is diffi-

cult to overcome.

By the similarity in energy release and core size as

obtained by the polytrope of index 3 and the isothermal

model, it appears that the interior dynamics of supernova

are relatively insensitive to the structure of the pre-super-

nova model. This does not mean that the existence of an

extensive envelope such as found in massive red giants might

not affect the velocity of ejection and the peak shock

temperature in the matter ejected. It does mean that the

implosion and "bounce" of the core, as well as the neutrino

energy transfer process are insensitive to initial structure.

The interior dynamics is much the same for the two models

presented.

Summary

The calculations reported here indicate that it is

possible to construct reasonable models of supernova by

assuming energy to transferred by electron-type neutrinos

during stellar collapse. Whether or not considerable mass



ejection by this process actually occurs depends critically

upon the average neutrino energy and the opacity for neutrinos

in regions of high density (p > 1012 gm/cm3). Unfortunately

these quantities remain uncertain. Because of the temperature

uncertainty, the emission rate of muon-type neutrinos is also

unknown. Even the relatively low estimates of energy loss

rates made for muon-decay (neutrinos from pion-decay may be

more important) indicate that muon-type neutrino processes

will be of paramount importance at the higher temperatures.



Appendix on Numerical Methods

Because the techniques used in this research are not

as yet well known to most physicists and astronomers,, a

brief summary is presented here. The equations of hydro-

dynamics may be written as follows:

i) mass conservation

dM R = 4_R 2pdR,

2) momentum conservation

du _ G__ 4_ 2 d_
dt dM'

R2

3) energy conservation

but using

gives

dE = _ dt - PdV,

dE

dT =

= dV + T

T

1

\;_ T..,V

4) equation of state as a function of temperature T and

specific volume V

P - P(v,T),

__ = ET(V, T),
/.

V



Ev(v,T)
T

In these equations M R is the mass interior to some radius

R, p = I/V is the density, U is the velocity of Lagrangian

mass element at R, E is the internal energy per unit mass,

the rate of addition of energy per unit mass, and P is

the pressure.

A. Difference Equations. As they stand, the fluid

dynamic equations are highly nonlinear. Because of this

difficulty only a few analytic solutions are available,

and all of rather limited applicability. For other cases

one is usually forced to some sort of approximation tech-

nique which is often as complex as numerical solution,

and which may tend to obscure the physical situation.

Even the approximation techniques are generally restirc-

tive. In view of these problems it is often the case that

numerical solution difference equations is preferable. At

first we neglect radiative transfer of energy. Neutrino

energy transfer will be treated subsequently.

The star will be divided into concentric spherical

shells by J boundaries numbered i, 2, 3,...J (from the center

outward). Quantities associated with the zone boundaries

will be subscripted j; those associated with zone centers



are subscripted j + 1/2. Time centering is indicated by a

superscript n in a like manner.

After using some simpler forms, difference equations

quite similar to those of Colgate and White (1964) were

adopted. Although they have been presented in the above

reference, the equations are discussed here for complete-

ness.

The initial configuration is input. The position

and velocity of each boundary

3

j = i, . . JJ

o
3

where JJ is the number of boundaries, the pressure, specific

volume and temperature of each zone

1
P.
3 + 1/2

vI
3 + 1/2

Tl
3 + 1/2

must be specified. _]e mass of each zone may be calculated

from

3

+1/2 3- Rj+l

1 3 1

- (Rj h /Vj+I/2

A.I



The effective mass of a zone as seen from a boundary is

the simple average

½ 1 1
= + DM9_I/2)3 <DMj +1/2

A.2

which assumes that the zone masses differ little. In

practice it was found that results were often better when

neighboring zone masses were the same or changed by a

small constant fraction. The total mass inside a boundary

j+l is

XM 1 = XM 1 + DM 1
j+l 3 3+1/2

A.3

In the Lagrangian system mass is necessarily conserved

until the zoning is changed. When a system changes drasti-

cally it is sometimes possible to shorten the time required

for a calculation by rezoning the configuration, but other-

wise the zone masses remain the same.

The equation for momentum conservation, may be written

as

u?+112_-un-i12 - pn. n- 112 n- 112 n
- (R_')2 [P3+I/2 3-1/2 + _j+i/2 - Qj-I/2_ At /DMj

_ G_XMj

(R3) 2 dtn



where the fluid velocity is

dR
U =

dt

so

A.5

Rn+l = R n + un+l/2 Atn+l/2

3 3 3

From this the specific volume can be updated by

3 3
n+l. n+l

n+l 1 (Rj+ I) - (Rj )

%+1/2 = --
3 DMj+I/2

A.6

which reflects mass conservation. The specific volume

evaluated at the same point in time as the fluid velocity

U, that is at n+i/2, will be useful.

n+l/2 i .V_+I
= _ _ j+i/2 + ,_l_vj+i/2)9+1/2

A.7

At this point a linear extrapolation in time is made for

the new temperature at point n+i/2. Initially

but afterward

Tn+1/2 =
3 ÷ 1/2

A.8

T3/2 = T 1
j+I/2 j+i/2

n 1 At n+I/2
T. + n n-i

3_i/2 2 Atn-I/2 (T9+I/2 - T9+I/2)

This will be used to determine the temperature at the epoch

n+l.



gives

a.9

A.10

Evaluating the equation of state at time step n+i/2

pn+ 1/2 ,_n+ 1/2 vn.+ 1/2
j+i/2 = P ' rj+i/2' j+i/2)'

n+i/2

(_I) = ET ( n+i/2 V_+I/2
V 9+1/2 'T9+I/2' 9+I/2) '

n+i/2 l_n+i/2 un+i/2
(_EI) : EV ,Tj+I/2, -j+i/2 ).
_IT 9+1/2

A. II

The quantity Q in the momentum conservation difference

equation is the so-called pseudo-viscosity term which

stabilizes this set of difference equations. When zone

boundaries approach rapidly it supplies a large pressure

to prevent them from crossing. In a shock the pseudo-vis-

cosity term converts kinetic energy of zone motion into

thermal energy, and is negligible elsewhere. The form

used is

Qn+i/2

j+i/2 = 2 (U_.++ii/2 n+i/2 +1/2- Uj )/_j+i/2
if V_.+I < vn.

j+i/2 3+1/2

.n+ 1/2 < un+ 1/2
and uj+ 1 j

= 0 otherwise,

A.12



which is zero on expansion.

The energy conservation equation becomes

n+l n 1
T. =
3+1/2 Tj+I/2 + n+1/2

ETj + 1/2

A. 13

E n+I/2 n+i/2 _._n+i/2,- (Pj+I/2 + Oj+I/2 ÷"_vj+i/2;

n+l _n+i/2 Atn+i/2 _
(vj+i/2 -  j+1/2) + -j+1/2 J

Although the energy source term _ has not been specified, a

form for it could have been evaluated at epoch n+i/2 along

with (A.9) for instance.

B. Pseudo-viscosity Technique. The pseudo-viscosity tech-

nique for treating hydrodynamic shocks is due to Von Neumann and

Richtmyer (1950). There are few references to it in the litera-

ture although it seems to be arousing some interest among

astrophysicists.

Attempts to solve the equations of fluid motion by numeri-

cal procedures are greatly complicated by the presence of shocks.

Mathematically the shocks are represented by surfaces upon which

the temperature, density, pressure and fluid velocity are dis-

continous. The partial differential equations governing the

motion require boundary conditions connecting the values of

The author found Richtmyer (1957), Fromm (1961), Henyey

(1959), Christy (1964) and Colgate and White (1964) most
useful.



these quantities on each side of the shock surface. The

Rankine-Hugoniot relations, i.e., local conservation of

mass, momentum and energy by the fluid, supply the

necessary restrictions, but are difficult to apply

during a calculation because the shock surface moves

relative to the mesh points in space-time which are

k

used for the numerical work. The nonlinearity of both

the differential equations and the boundary conditions

does not simplify the problem. The motion of the shock

surfaces is not known in advance but is determined by

i

the differential equations and the boundary conditions

themselves.

The method of Von Neumann and Richtmyer automatically

treats shocks and avoids the necessity for pre-knowledge of

shock motion by utilizing the effects dissipative mechanisms

(such as radiation, viscosity, and heat condiction) upon shocks.

When viscosity is considered, the mathematical shock discon-

tinuity becomes a thin layer in which the pressure, density,

fluid velocity and temperature vary rapidly but continuously.

By introducing an artificial dissipative mechanism to spread

this shock layer over a few mesh points, the difference

equations approximating the equations of fluid motion can be

used throughout the calculation, as if no shocks were present.
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In the numerical results the shocks appear as rapid changes

in the variables, almost discontinuities, which have very

nearly the correct speed and across which the pressure,

temperature, and density have very nearly the correct changes.

In an actual physical problem the dissipative mechanisms

are generally much smaller than the artificially introduced

viscosity term. The limit on computational reproduction of

a physical situation is that the zone size be smaller than

the smallest dimension of interest. The quadratic depend-

ence of (Q) on the velocity difference insures that this

form for the artificial viscosity is small except in the

shock region. Note that the I/V dependence gives an in-

creasing pseudo-viscosity for large compression.

C. Stability of the Difference Equations. For a more

complete discussion of the stability of finite difference

approximations the reader is referred to Von Neumann and

Richtmyer (1950), Fromm (1961) and Richtmyer (1957). To

clarify the meaning of stability, consider the exact solu-

tion Y(r,t) to the one-dimensional differential equations

of fluid dynamics for some specified initial-value problem.

Let _ be the corresponding solution to a system of differ-
3

ence equations which approximate these differential equations.



At <

C.I

where Ax is a zon width and v
s

This must be true for each zone.

The error of the approximation is then

ITn - _(r=jAr, t=nAt) I
3

Suppose that this error is small enough at some time t, and

consider some small perturbation 6_. Does this perturbation

grow with time? If so the difference scheme is obviously

unacceptable as an approximation to T(r,t).

The criterion for stability against such small per-

turbations, for a set of difference equations such as pre-

sented here, is that the time step for integration At satisfy

Axj +1/2

v
S

is the local sound velocity.

There is a simple physical

interpretation for this restriction. Neglecting any sort of

radiative transfer and considering only gasdynamic effects,

the minimum time for material at zone boundary j to communi-

cate with material at zone boundary j+l is just the sound

traversal time t
S

xj+ 1 - x.]t -
S V

S

The requirement

 x +1/2
V
S

At < t
S



is simply that conditions at boundary j+l, say, at time

epoch n+l be physically independent of what transpires

at boundary j at the sam_ epoch n+l. Most physicists

are more familiar with the analagous situation in relativity

where the velocity of light plays the part here taken by the

sound velocity. Although such a restriction is mathemati-

cally required of difference equations such as these, this

restriction is physically necessary only when gasdynamic

motions having velocities of the order or greater than the

sound velocity are encounteed. If this is not the case a

different set of difference equations might be developed

which had a less stringent requirem_ent on theintegration

time step.

For a complex problem in which there are drastic changes

from the initial configuration, considerable computational

time may be saved by choosing the integration time step At

as the maximum value consistent with the stability require-

ment (C.1). In the supernova problem it was discovered that

this requirement, while necessary, was not sufficient to

reproduce the physical situation faithfully. In the adia-

batic contraction of a gravitating uniform sphere, it was

found that the analytic s01ution was not succ_ssfully

* See Henyey (1959) for example.



approximated unless some restriction like the following

was used:

0.02 V

so that the fractional change in specific volume was only

a few percent. Colgate and White (1964) use the following

simple and effective restriction on the time interval.

0.02 * V_. * At n+I/2

Atn+3/2 _ ]+1/2

- 1/2 !
C.2

In the difference form for the energy equation, an

energy source term _ appears. This allows energy to be

added or removed locally, although as written does not

explicitly account for energy transfer between zones.

When energy is suddenly added or lost instabilities often

result. Now the energy density E of a fluid may be written

as

1
E - PV

y - 1

where P is the pressure, V the specific volume, and y the

'tratio of specific heats" which is constant for an ideal

gas. Generally y is a slowly varying function. With this

in mind, the following time interval restriction was used



At n+3/2

C.3

0 02 pn Atn+I/2
• j+i/2  j+l/2

l Pj+i/2 V_j +i/2 n-i -in - Pj+I/2 _j+i/2 1

and found to be adequate.

Using these three restrictions on the time step, the

new time interval can be calculated• The sound velocity

was found to be adequately represented by the simple

approximation

v _ _2PV
s

The time intervals At 3/2 and At I/2 are input.
n

Then At ,

which is needed in _A.4), the momentum conservation equation,

is

C.4

At n = 21 (Atn+i/2 + Atn-i/2)

This procedure allows a small, conservative estimate of the

time interval to be input which insures that the stability

requirements are not violated. The scheme then chooses the

optimum time interval and rapidly approaches it. It is

noted in passing that the reason for centering these differ-

,

ence equations in time is to allow this calculated time

step scheme to be used accurately with varying time steps•

Only the pseudo-viscosity Q in (A.13) is not centered in

time, a condition mitigated by the fact that Q is not a

physical but a computational quantity, and that computa-

tions using this Q are accurate•



D. Boundary Conditions. In the supernova problem

the interior boundary was taken to be at the origin, so

by symmetry

n

R 1 - 0

n

U 1 = 0

for all time. This was not necessary; the inner boundary

could have been at some distance R from the center of the

star, acting as a spherical piston with velocity

n = f (t n)
u 1

which in general varies in time. There are difficulties

associated with zones near a piston in this sort of scheme,

however, and care should be taken.

Having specified the center of the star as the inner

boundary, symmetry assures that pressure, temperature and

specific volume are continuous through the origin and no

inner boundary condition need be specified. The outer

boundary is free to move, however,

n W0
Ujj

in general, so that its motion will be determined by the pres-

sure (and artificial viscous pressure) at JJ+I/2. These are

not calculated and must be imposed. If

* Christy, R. (1964).



n n

PJJ+I/2 =- PJJ-I/2

Qn- 1/2 ^n- 1/2
JJ+ 1/2 = - %_JJ-1/2

D.I

then the total calculational pressure (P+Q) will be zero

at JJ. This boundary condition was used. In this particu-

lar problem the motion of the inner regions was most inter-

esting so that the choice of surface boundary condition did

not happen to be critical.

E. Analytic Checks of Numerical Results. In order

to test the validity of the numerical techniques employed,

several problems for which exact analytic solutions exist

were calculated. Some of these results are to be found in

Colgate and White (1964), and they are reproduced in the

author's thesis both as an argument for the validity of

these particular difference equations and because they

provide insight into the technique. The problems for which

checks were made are: (i) a strong, plane shock propagat-

ing through an ideal gas with Y = 5/3 and density decreasing

with the -7/4 power of the distance, (2) a strong spherical

blast wave in an ideal gas with a density

-n
P _R

)



(3) the adiabatic collapse of an ideal gas sphere of uniform

density, and (4) the hydrodynamic motion (or lack of it) of

a gravitating gas sphere in hydrostatic equilibrium. There

is excellent agreement between the numerical and analytical

solutions in all four cases.

F. Radiative Enerqy Transfer. If the diffusion

approximation is valid the change in energy density due to

sources and time-dependence can only affect lengths large

compared to the mean free path. Then, for conservation of

energy,

___E 1
_t + V_E = _ - _ V " _

where s is the energy generation rate (per unit mass) due

to sources, E the energy density per unit mass, v the velocity

of the source, p the mass density, and _ the energy flux. If

source motion can be neglected, and macroscopic changes occur

on a time scale much larger than the mean free time for the

diffusing particles, then

=- v- AT)

Assuming sperical symmetry, this may be rewritten as

dT L(r)

D d-_ = - 4_R2

where r is the radial coordinate and

The exact solutions for (i), (2) and (3) are to be found

in Burgers (1949), Sedov (1959), and Colgate and White

(1964), respectively.

4



r

L (R) = I 4nR 2 -& p dR

_c dE
D-

3 dT

which are the standard forms for radiative diffusion used

in quasi-static stellar models.

If macroscopic changes occur fast enough so that work

done by pressure forces PdV must be included in the energy

conservation equation, then

_c _(aT4l)dt - I_V
(R2 _-" _R "

dE = _ dt +R2 5R
P

where spherical symmetry is assumed, V is the specific volume

* 4_pR2dR,and a is the radiation constant. Using dM =

_L
dE = (s - _-C.) dt - PdV

0_

where

F.I

(4nR 2)2 ac d(T 4)
_ dM

and

F.2

_= 1
P_

is the Rosseland mean opacity. Rewriting the energy con-

servation equation in terms of the temperature T gives

F.3
dT : (_ -_)dt - (P + _ r v

For electron-type neutrinos and antineutrinos in thermal

equilibrium and in equal abundance, the radiation constant

is a(neutrinos) _ ! a(photons).

8



_L

where (_)dt is the energy lost by diffusive transfer, PdV

is the work extracted by macroscopic motion, and _ is the

energy gain by other mechanisms.

G. Difference Equations and Boundary Conditions For

Radiative Transfer. Equations (F.I), (F.2) and (F.3) may

be incorporated into the hydrodynamic difference equations

discussed in the previous section. Comparing (F.3) with

our earlier energy conservation equation suggests the

following difference equation, by analogy with (A.13),

n+l n 1

T. n+ 1/2
3+1/2 = Tj+I/2 + ETj+I/2

_ f_n+ 1/2 ^n+ 1/2F - "_j+i/2 + Uj+I/2

_'vj+i/2) (j+i/2- V_j+I/2)

•,.n+ i/2

+ Isj+i/2 -

. n+1/2 ALn+I/2)
z_uj+ 1 _

DMj+I/2

) Atn+ 1/2

G.I

But then (F.I) becomes

G.2

4
t_n+i/2, t_n+ 1/2

ALn+I/2 :_ 16n2ac (Rn+i/2) 4 ''j+i/2; - "I'j-i/2)

3 3 3 (DM * AK) n+I/2.
3

where

n+i/2 1 _wn+i/2 . n+i/2

(DM * AK)9 = _ (DM9+I/2 "-'9+1/2 + DM9-1/2 _9-i/2)

G.3

4



and (F.2) becomes

n+ 1/2

AKj + 1/2

G.4

n+ 1/2
The term AL.

3+1

l_n+ 1/2
= AK ,wj+i/2,

 j+l/2
+1/2 )

involves quantities evaluated at space points

j-i/2, j. and j+i/2. The latter will not have been evaluated

n+l
when T. is to be calculated from (G i) if the method of

3+1/2 - ,

sweeping through the space-time mesh described previously is

used. The difficulty may be avoided by evaluating

n+I/2 n+l _3+i _+i/2 mn+i/2U2 ' R2 ' /2' "3/2 ' _3/2 and

pn+i/2 __n+i/2 _._+i/2 . n+i/2 ..n+i/2

3/2 ' n'r3/2 ' "'v3/2 ' _3/2 ' _"3/2

G.5

initially, and then sweeping the mesh as shown in Table V.



The quantities listed in (G.5) may be determined from equa-

tions given previously, with the exception of the luminosity

AL at the inner boundary. If this boundary is the center of

n

the star, i.e., R 1 = 0 for all time n, then by symmetry

G.6

for all n also.

n

AL 1 = 0

Another boundary condition must be imposed on diffusive

energy transfer. Christy (1964) has proposed that this be

accomplished by requiring that the surface boundary condition

for the time-dependent problem be consistent with that for

the time-independent diffusion equation. For a static, gray

atmosphere, the solution of the equation of transfer for

photons is

4 3 4

T = _ T [7 + q(7)]• e

where 7 is the optical depth and q(7) is a slowly-varying

function.

gives

The diffusion approximation for the same problem

T 4 3 4= T [7 + c]e

where c is some constant. If c = 2/3 then

Surface

3 4 3 T4_
_ T I4 e 2

Surface



If the effective temperature T of the surface is known,e

the problem is determined. This may be-expressed as

(log T 4) I = !

_T ISurface 2

but to apply this expression it is necessary to know where

the surface is.

In order to avoid prejudging the calculation, a differ-

ent approach was taken to determine the surface boundary

condition.

When the mean free paths per zone reached a certain small

fraction X, a simple energy transfer calculation was made.

The incident flux upon zone j+i/2 was obtained from the

luminosity at boundary j while the opacity of zone j+i/2

was determined by the temperature of this flux, i.e., the

temperature of zone j-I/2. This gave the energy deposited

while the neutrino loss rates discussed in chapter III

gave the energy emitted by the zone j+i/2. Using (A.13)

with the change

n+i/2 _n+i/2

sj+i/2 _ A"_j+I/2

_n+i/2

where Ar.j+i/2 is the net energy deposited by neutrinos, the

temperature of zone j+i/2 in the emission surface was de-

termined. In practice the transition from opaque to trans-



parent was so abrupt that the calculation was not sensitive

to any sort of reasonable boundary condition of either of

the types just mentioned. Outside the emission surface the

uncoupled hydrodynamic scheme was used, without any diffusive

energy transfer.

H. Stability of the Difference Equations With Radiative

Transfer. Richtmyer (1957) has discussed the stability of

finite difference approximations to the diffusion equation

in some detail. The discussion in this section is therefore

limited to those aspects of stability of immediate interest.

A complete treatment of the stability of a nonlinear diffu-

sion equation coupled with the equations of hydrodynamics

would be extremely complex. It appears that in practice

the restrictions necessary for a linear, uncoupled diffusion

problem can be suitably generalized for more complex systems.

The simple form of the diffusion equation is

= D
_t _x 2

in one dimension, where C is the concentration of whatever

is diffusing, t the time, x the spatial coordinate and D

the diffusion coefficient. Perhaps one of the simplest

difference approximations is



cn+l Cn n 2Cn + Cn
] - ] = Dn.+i/2 Cj+I - _ ]-i

Atn+ 1/2 3 (Ax 2 )n
3

where the subscripts and superscripts have the same meaning

as before, and

n n n

(Ax2)j = (Axj+i/2 + Ax.3_1/2)

For stability it is necessary that

2DAt

2
(Ax)

< 1

H.I

for all j and n. This expression may be used to determine

the time step At n+3/2 at the next epoch. In particular, for

the coupled problem,

Atn+3/2 _

H.2

(H.I) gives

2

n+i/2 . n+i/2 (Rn+l n+l.
ETj_I/2 _u_j_i/2 j - Rj_ I)

t- n+i/2,2 t_n+i/2 )3
2 ,vj_i/2 ; ''j-l12

x const.

which worked quite well when the minimum value for j = i,. . .

JJ was taken.

* See Richtmyer 1957, chapters 1 and 6.



TABLE I

Condensed model n = 3 polytrope model

escape velocity for

ejected matter
_1.4 x 108 cm/sec _ 4 x 108 cm/sec

"velocity of ejected

matter"

9
_7 x 109 cm/sec _i0 cm/sec

mass of remnant core

radius of core

1.2 M 1.8 M
®

6
1.6 x i0 cm 1.4x 106 cm

kinetic energy of

ejected mass
105294 x ergs

>l.4x 1052 ergs

energy of emitted

electron neutrinos
1052 1052_7 x ergs _6 x ergs



TABLE II

total light emitted << kinetic energy

intrinsic maximum

visual magnitude -17.5

mass ejected

velocity of ejection _- 7 x 108 cm/sec

kinetic enerc[y of

ejected mass 21052
ergs



T___9

T A B L E III

(-_ pair-annih. > \ tables._

1024 1025 1026360 5 x 3 x 1.4 x

1022 1023 1023240 3.7 x 4 x 8 x

1021 1018 1018120 1.3 x 5 x 2.6 x

* These values are derived from the Chiu (1961) tables of

electron pair-annihilation neutrino rates.



TABLE IV

T9
m

T

360 10 -6 sec

240 -4
1.4 x i0 sec

120 10 -2 sec



quantity

U

R

V

T

P

ET

EV

AK"

AL

T

P

TABLE V

time epoch

n+i/2

n+l

n+l

n+i/2

n+i/2

n+i/2

n+1/2

n+i/2

n+I/2

n+ 1/2

n+l

n+l

space point

j+l

3+1

j+l12

j+i/2

3+ i/2

j+I/2

j+i/2

3+ 1/2

j+i/2

J

j-i/2

j-i/2
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Fiqure Captions

Zero temperature equation at State.

Comparison of the structure of isothermal-core

and polytrope of index 3 models in the tempera-

ture - density plane.

Comparison of the structure of isothermal-core

and polytrope of index 3 models in the radius -

density plane.

Evolutionary history of Mr= 1.5 MQ zone of i0 M_

polytrope of index 3, for three different treat-

ments of neutrino energy transfer.

Evolutionary history of two representative mass

zones of a I0 MQ polytrope of index 3 initial

model, with neutrino energy transfer treated in

the diffusion approximation.

Comparison with the calculations of Colgate and

White.

Temperature-density history of two representative

zones of the isothermal-core initial model, with

energy transfer by neutrinos in the diffusion

approximation.



Table I.

Table II.

Table III.

Table IV.

Table V.

S--0

Table Captions

Comparison of centrally-condensed and polytropic

models.

Observed characteristics of type II supernovae.

Estimates of energy loss in ergs/gm/sec due to

muon-type neutrinos formed by muon-decay and

1012muon pair-annihilation (density is p =

_/cm 3 ).

Relaxation time for cooling due to muon-type

neutrino escape at high temperature (density

is p = 1012 gm/cm3).

Space-time points at which quantities appearing

in the coupled difference equations of hydro-

dynamics and diffusive energy transfer are

evaluated.



In this _we willadiscuss the properties of

stars whose interiors are composed of matter in the degenerate

state. The first to be considered will be stars whose

internal pressures derive from the presence of degenerate

electrons.

The pressure of a degenerate electron gas at zero

temperature is characterized by a function f(x) such that
%

p = A f (x)

where x is the Fermi momentum in units of mc,

and

f(x) x(2x 2 3) (x 2 + i) _ + 3 sinh -I---- -- X

a

7_n4 c s

3h s
- 6.01 x i02s

We may relate x to the density by

p = n_, H = BX s

where

S

8r_n s cS_, H

3h s
= 9.82 X l0 s _.

H is the hydrogen atom mass, n is the electron number density,

and _, is defined by the equation for p and is the mean

molecular weight per electron.



We recall the asymptotic forms

1 x 9 58 xG 4 x_ _ - -- x_ + . . (x _ O)f(x)~ _ - 7 _ 22

f(x) _ 2x 4 - 3x* + (X _ _)

We wish to find the stellar structure corresponding to

the above equation of state. We recall,

dM(r) = 4_r=p,
dr

d__ = -GM(r)
dr r 2

so that

r _ dr dr

Substitution of p and p for the electron gas yields

where

A 1 d _r_ df(x)__;_ d,- =-

8x 4 dx

dr - (x 2 ÷ i)_ d-_

4_GBx s

or

1 df (x) 8x dx
- 8

xa dr = (x _ + i)_ dr

d/x _ + 1

dr

Thus,

;o _r(r_ r+ - 2A



Transforming by y_ = x _ + 1 yields

1 d d
r2 dr < r2 2_r =- nGB _ (y_ - i)

3 /2

2A

We define the boundary conditions at the center by

x _ Xo, y - Yo as r _ O. Finally, by means of the trans-

formation

= r/_ , { = Y/Yo

with

we find

C2_ A7½1
O, = , 17"GJ BYo

where the boundary conditions are taken as

d_

_ _ I, dr _ 0 as _ - 0,

and for the surface, take y = _i at which x - 0 so that

= i/yo.

In general, the density is given by

P = Po _ i__',)3/2
- i)5/2 <9 2 Yo_J

where Po = BX3o = B(yo2 - i)3/2
and is the central density.



If _ is the gravitational potential then

d__ : GM(r) : _ 1 dp

dr r 2 D dr

For the degenerate equation of state

d_ 8A d_l
so that_ m _ YO

dr B dr

8A

=- B Yo{ + constant.

Since { - 0 as r _ =, the constant is

8A GM
. Thus,

B R

< G-t =- B Yo _ - - _--- , (r _ R).

The mass inside any point is

M(_) 4_ pr2dr 4_ (Is= = p_ d_
O O

_3yos
= 4_ po (yo _ - i) 3/Z _o YO 2 ") _2d_

=- 4_o _SV_S Ha d___
(yo2 _ i)3/2 d_

_2 A'_3/2 1 ,q_= - 4_ L_) B_ d'n



The to_l mass is then

Fmr the case of high central densities (y _ _), the

differential _quation becomes

If we recall the form e£ the Lane-Emden equation, viz.,

then we see that Our configl/ration approaches a Lane-Emden

polytrope of indeM 3. We no_e also that the radius scale

factor 0L-_ 0 im_lyin_ _:_%a£ the stellar radius approaches

zero. At {_ $_ _ime {=_ D%Ik_ approaches

_-A _fZ 1 d_

#

where % is the i_ex _ solution.

mass _ given by

5.7_

This implies a limiting

For small central densities one. can show that the

configuration approaches a polytrope of index 1.5. Hence

the density distribution will lie between those of poly-

tropes of index i._ and 3.



To compute the internal energy of the co_Su_tion

we use the relation between total kinet_¢ ene3-_ ar,d Fermi

momentum given by

9

T_m 4 c 5

Uk:. - 3h _ g(x). where

l

g(x) = 8X s [ (X 2 + i) _ - I] - f(x)

Hence, the total kinetic energy for the configuration is

found from

u--A Jo 8x3 [(i _ x_)_- i]- f(×)} dv

=B-- _o _ (i + x 2) _ - 1 dV - . _dv

The corresponding equation for the total potential

energy is

G I° M(r)dM(r) 1 _.- = =-- , _ dM(r)
_o r 2 _o

I" _ d-_r_= G 4NDrM(r)dr = - 4n dr
• o .o dr

Integrating by parts yeilds

- fl = 12_ _ Pr_" dr = 3 I" Pdv
"'O " O

From U we also have

q



Hence

= Yo - dM(r)

u = 8AyOJo'(_B
- " _ dM(r) + /i

yoJ 3

+3

The _ota/ ener_/ E I_

GM__I

6 GM _
_or _ polykr_e _ n : 1,5, &k- - ?

and

U=-£
Z4%

For I% = _,

For the [_QM _ solution for the total mass we note

that for _ reaso,a/ble composition with _e _ 2, _ has an

upper limit of about 1.4M G. This is the so-called

Chandrasekhal- limit for such objects. More refined calcu-

lations bring this down to about 1.2M G.



As the central density of a white dwarf star approaches

very high values, new physical phenomena come in which cause •

a departure from the asymptotic approach to this limiting

mass. One modification arises from the need. to use the

general relativistic equation of hydrostatic equilibrium.

Much more important is the increase of the mean molecular

weight at the center owing to electron capture on all nuclei

which occurs for high electron Fermi energies. This

decreases the value of the limiting mass and eventually

induces an instability in the models. As will be seen later,

beyond a little more than 10 9 gm./cm, s central density there

are no longer any stable degenerate stars owing their stability

to electron degeneracy. A new set of stable models becomes

possible in the region of nucleon degeneracy.

__4,, s_ _ __ s4_,_.,.,. (u._- c_° _s_, _q_.
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ABSTRACT

Two composite equations of state have been used in

the investigation of the structure of neutron (or hy-

peron or baryon) stars. These have been based upon

two forms of the neutron-neutron potential suggested

by Levinger and Simmons. In one form repulsive forces

come in quickly at greater than nuclear densities; in the

other form the repulsive forces come in slowly. In the

former case the maximum stable mass of a neutron star is

about two solar masses; whereas in the latter case it

is only about one solar mass. This probably represents

a measure of the basic uncertainty in the properties

of neutron star models due to our lack of knowledge of

nuclear forces. The maximum central density of a stable

configuration is similarlyuncertain; this density

probably lies in the range i015 to l016 grams/cm 3.

Details of many of the neutron star models calculated

are summarized and discussed.



INTRODUCTION

The problem of the properties of highly condensed matter

has a long history. The first important contributions came as

early as in the period of 1930-40, from Chandrasekhar (1935, 1939),

Landau (1932), Oppenheimer and Serber (1938), Oppenheimer and

Volkoff (1939), and others. For a degenerate body under gravita-

tional attraction there may exist two possible equilibrium states,

the less condensed state composed of electrons and nuclei, and

the more compressed state of neutronic or baryonic configuration.

The "electron-nuclear" state corresponds to the observed white

dwarf stars. It was suggested (Zwicky 1938, 1939, and 1958)

that the more condensed state of nuclear density might be

physically realized in a form of a neutron star formed as the

result of a supernova explosion, at the last stage of evolution

of a sufficiently massive star. This view was somewhat neglected

for a long time. However, there has recently arisen a possibility

that a neutron star formed as a remnant of a supernova explosion

may directly or indirectly be responsible for some of the celestial

x-ray sources now known to exist (Chiu 1964, Chiu and Salpeter

1964, Morton 1964, Tsuruta 1964, Cameron 1965, and others), and

the importance of the study of highly condensed matter has been

greatly increased. Even aside from the problem of observing



these stars, the study of degenerate stars is important in itself

as a fundamental problem in physics. J.A. Wheeler and his

collaborators have been pursuing the problem of degenerate stars

since 1958 in connection with gravitation theory and gravitational

collapse. The best collection of their work is found in Harrison,

Thorne, Wakano and Wheeler (1965). Some other recent contributions to

this problem are those of Cameron (1959), Amburtsumyan and Saakyan (1960,

1962, a,b), Sahakian and Vartaman (1963), and Misner and Zapolsky (1964).

In considerations of neutron stars the greatest uncertainty

is caused by lack of knowledge of high energy physics, and, for

this reason, the interaction forces between neutrons were usually

neglected in most of the previous work. However, the typical

1015 3density in neutron stars is as high as gm/cm or more,

for which the nuclear forces between the constituent particles

are far too important to be neglected. It should be emphasized

that an exact knowledge of the nuclear forces near and just above

nuclear densities (around 1014 _ p _ 1016 gm/cm 3) is required

to determine the quantitative properties of the models not only

in this range but also for far denser configurations. It is

likely that denser matter, p > 1016 gm/cm 3, should follow a

simple asymptotic equation of state of the polytropic form

P = cn 7 = (y-1)c, with the value of Y properly chosen (where

P is the pressure, c is a constant, Y is the adiabatic exponent
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and e is the energy density), but the important question is:

to what nuclear equation of state should this be joined in the

lower density region near the surface? Some efforts have been

made in recent years to take into account these nuclear forces

by Cameron (1959), Amburtsumyan and Saskaan (1962a) and others.

In this paper we explore this problem in more detail.

For this purpose, we have chosen two possible forms of the

nuclear interaction between neutrons as suggested by Levinger and

Simmons (1961). The possible application of these nuclear potentials

to the problem of neutron stars was proposed by Salpeter (1963).

These potentials are consistant with our knowledge of nuclear

forces in the vicinity of normal nuclear densities, if we

assume charge independence of these forces. However, the uncer-

tainty is increased as the density goes higher. Hence, the

difference in the models constructed by the use of these two

different nuclear potentials may give an indication of the

uncertainty due to the lack of knowledge in this field.

In a physically realistic equation of state the pressure

is not allowed to become indefinitely large. Therefore, either

one of the possible pressure saturation conditions P _ e/3

(Landau and Lifshitz 1959) or P _ ¢ (Zel'dovich 1962) were

applied in our models. In our composite equation of state the

equilibrium composition of degenerate matter was used. For
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densities lower than about 3 x I0 II gm/cm 3 matter consists of

degenerate electrons and various heavy nuclei. The most abundant

nucleus changes from iron to more neutron-rich nuclei with increas-

ing density (Tsuruta and Cameron 1965). For densities higher

than this, heavy ions gradually disolve into neutrons. The

system then consists of neutrons, protons and electrons in

equilibrium. Near and above 1015 gm/cm 3, mesons and other baryons

appear. The threshold density at which these new particles appear

is quite uncertain due to the lack of knowledge of the interaction

forces between the strongly interacting particles. However, as

will be shown later, the effect of the possible change of compo-

sition due to the shifting of the threshold energy for the

appearance of these particles is very small. At the present

stage, we are very ignorant concerning the quantitative nature

of the strong interaction forces between hyperons, but we know

that these forces are of the same nature as the nuclear forces

which are responsible for the binding of nucleons together in

a nucleus. Hence it was assumed that the same Levinger-Simmons

type nuclear potentials were experienced by all the nucleons

and hyperons which are present in the assembly.

This paper is confined to cold models of degenerate stars.

The cooling of such stars will be treated in a separate paper.
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HYPERONIC MIXTURES

i0 IIWhen densities exceed about 3 x gm/cm 3, all heavy ions

become unstable against disintegration to neutrons by means of

electron capture, and matter consists mainly of neutrons. These

neutrons are, however, unstable against decay to protons and

electrons by 0.783 Mev, the neutron-hydrogen mass difference, and

the neutron gas is always contaminated with protons and electrons.

When the Fermi energy of the electrons reaches the rest mass of

the muon, 106 Mev, neutrons can be transformed into protons and

negative muons. With further increase of energy, various kinds

of hyperons are created. Some of the many possible hyperon pro-

duction reactions are:

2n - p+_-, 2n - 2A, 2n -p+H-, 2p - 2E +,

2A _ 2_ °, 2A _ 2_ ° n+A _ p+_-i (l)

We note that in these reactions strangeness is not conserved.

The time scale of processes like (1) is on the order of 10 -9 sec,

which is long compared with nuclear time scales but extremely

short from the astronomical point of view. Even though faster

reactions exist, the above examples are fast enough to maintain

equilibrium. Consequently we can safely assume that thermodynamic

equilibrium is maintained throughout.
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The densities at which these meson and hyperon transforma-

tions take place are above nuclear densities, and all the

constituent baryons and leptons become highly degenerate soon

after creation at the threshold energy. Even when the temperature

is as high as 5 x 109 OK (a typical maximum temperature of

interest in the problem of neutron stars) their degeneracy is

so high that the cold matter approximation is fully justified.

, = 1015 gm/cm3(For instance at T = 5 x 109 OK and p , the ratio

of neutron Fermi energy to kT is about 400). Therefore, we can

assume that all the constituent particles are in their lowest

energy states.

Some years ago we had a rather tidy list of about 30 so-

called "elementary" particles. Today 60 to 70 more have been

added. The first problem we face is to determine which of this

profusion of particles survive as the authentic components of

our baryon gas in our range of interest. First of all, positrons,

photons, neutrinos, positive muons and pions, and K mesons are

all absent at zero temperatures because nothing prevents their

decay and annihilation. On the other hand, stability is established

among hyperons, nucleons, negative muons and electrons, because

the decay products of these particles find no unoccupied place

in phase space due to the complete degeneracy of baryons and

electrons and the Pauli exclusion principle. The stability of



negative pions is established through the high degeneracy of

negative muons at very high densities. The presence of the newly

discovered particles is restricted due to the fact that most of

these particles are heavier states of familiar mesons, nucleons,

and hyperons, and that the upper limit of density of interest

to us is about 1016 gm/cm 3. This is because the equation of

state for densities higher than this value becomes independent

of the kind and the concentration of particles present as explained

in the next section. Consequently, the following thirteen

particles were selected as sufficient for our investigation,

following Ambartsumyan and Saakyan (1960):

, , Z+ -e-, _-, p, p*, n n*, A Z°, , Z-, E °, E , _- (2)

n* and p* are isobars of neutrons and protons in the first excited

states, now called delta particles.

The concentration and the threshold energy of the appearance

of each of these particles are determined by minimizing the total

energy subject to the constraints of conservation of charge and

baryon number. The results may be expressed as:

+ 'b 0 (3a)Eb + E e = E - Ee = Eb

_- = E = E- (3b)
e

Z nb = n (3c)

7 _ - Z n b - T n_ - n_ - ne = 0 (3d)
b b 6
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where E and n represent the total energy and total number density.

The superscripts +, -, and 0 refer to individual positive, negative,

and neutral particles, and the subscripts b, _, n and e refer to

baryons, leptons excluding electrons, pions, and electrons. The

first two equations correspond to thermodynamic equilibrium and

the last two equations represent the conservation of baryon

number and the conservation of electric charge, respectively. In

a macroscopic medium consisting of sub-atomic particles, only the

average potential energy of the particle is worth mentioning, as

it represents the interaction of one particle with all the others.

In such a case, the total energy _ of completely degenerate

fermions k can be expressed as

where

F /6_2h I/3 1/3

Pk = \a k J _ nk

is the Fermi momentum, _ is the mass, and V k is the average inter-

action potential of the particles k. (a k is as defined in (5)).

The first two terms represent the chemical potential. For completely

degenerate bosons the chemical potential is just the rest mass of

the particle. The present state of the theory of elementary particles

is so far in no position to give any definite information on the inter-



action potentials of strongly interacting particles for densities

substantially exceeding nuclear density. Hence, at present we

do not know how to improve upon the simple assumption that all

baryons interact identically (that is, Vk for all baryons are

equal). We neglect V k in calculating the composition of the

medium, but not its pressure. Interaction potentials of leptons

can always be neglected in the problem of neutron stars (Salpeter,

1961). The concentration nk of the particles k in a hyperonic

mixture may then be found from

where

nk = 1 akni ii_(</ni)2/3_3/2

1

= 3 2kk 3

kk = _l(_c), _ is the mass of a particle k,

ak = 2I k + l, Ik = the spin of the particle k,

1

[I k = 3/2 for n* and P*, Ik = _ for

i = e when k =

i n when k A, Y°, Eo= = - or n*,

i = P when k = 7+ or P*, and

(5)

others in (2)]

D

i = 7. when k = E .



When n. < _ no particles k exist and therefore1
is the threshold

number density of the particles i for the creation of particles k.

The numbers of muons are expressed in terms of electron numbers,

the numbers of the positively charged baryons are expressed in

m

terms of proton numbers, those of negatively charged baryons E

are expressed in terms of E-, and the numbers of neutral baryons

are expressed in terms of neutrons. Hence equations (5) give

the concentration of all particles k as a function of neutron

number density n , if the number densities of electrons, protons
n

and Z- n , n , and nz-, are known as a function of n . These' e p n

are determined from

E + E = E
p e n

EF_ - Ee = En (6)

and the last two equations in (3). This problem was solved by

an iterative procedure. Once the concentrations of the constituent

particles are known, the total density of matter is found from

,7,
k

where the summation is taken over all particles k which are present.

When the threshold energies of electrons and negative muons

exceed the rest mass of negative pions it is more economical

m

energetically if e- and _ are converted to _ . In this case,



n

the number densities of e and _ stay constant with further

increase in total density, at the values

n
e

1037 -3 (3 2k 3 -I-- 1.2 x cm = )

3

-3 c 2)3/2/B3 . (8)n = 3 36 x 1036 cm (m 2• m m m

I_ 3TT2

m

This is because all the excess electrons and _ above the threshold

value are converted to w- in a higher density region•

When the electron threshold energy is lower than the muon

rest energy, but when the sum of the proton and electron theshold

energies is larger than the neutron rest energy, the abundance

equations take the simpler form:

n - n
p e

-3 x2(nn/no)2/3: n × + ]
0

1/2 3
- l}

wi th

a, = (MnmM P)/m e = 2.54; X : 2Trme/M P,

no = 8(meC/_ )3= 8/ke3 (9)

and

p =Mn + Mn
pp n n

l0 llFor densities lower than 3 x gm/cm 3, the equilibrium

nuclear abundances of various heavy nuclei as calculated by

Tsuruta and Cameron (1965) apply.



The results are summarized in Figure I. The number densities

of various baryons k are plotted as functions of the total density

p. For p _ 1015 gm/cm 3 the total baryon number density and nuetron

i015number density practically coincide. For 0 _ 3 x g.vcm3_I the

rapid rise in the densities of other baryons depresses the neutron

density considerably below the total baryon density. For densities

1016higher than about 5 x g,vcm3_z the concentrations of all kinds

of baryons are about 1039 1040 -3- cm and they are all of the

D

same order of magnitude. The electrons and _ densities exhibit

= 1015 gm/cm 3a sudden drop a little above p , where the _- hyperons

appear, n and n become constant around p = 1017 gm/cm 3, due to
e p

o

the creation of n mesons.

It may be worthwhile to note that the order in which the

particles appear is not in the order of increasing masses. For

instance, Z- is heavier than A, but Z- begins to appear at lower

densities than A. The reason is that the E hyperons have to

neutralize the positive charge of the protons whose concentration

increases with increasing n n, and starting from a certain point

m

the production of Z is energetically more economical than that

of one new proton and two new electrons. A similar argument

explains why the _ hyperons appear at lower densities than the

+ _. 1017Z hyperons which are lighter than _ For D _ 1.4 x g.vcm3-/

the _ density increases so rapidly with further increase in

density thatit soon becomes of the order of the densities of the



D

other members of the mixture.

The general results for the whole region are shown in

Figure 2. In order to avoid overcrowding, the hyperons in this

graph have been grouped together in a strip. The rise of the

densities of these particles is so rapid right after the thresholds

have been crossed that the effect of nondegeneracy can safely be

neglected. The neutron Fermi energy is about 510 Mev when

1038 -3n _ 6 x cm . All through the region of the hyperon phase
n

the electron number densities are roughly two to three orders of

magnitude lower and the _ meson number densities are about

three to four orders of magnitude lower than the neutron number

densities.

Recently, Bahcall and Wolf (1965) raised the question of the

presence of pions even near normal nuclear densities (_ 4 x 1014

gm/cm3). This is possible only if pions have a sufficiently small

effective mass. If protons and neutrons were present with equal

abundance, this might be realized. However, both Bahcall and

Ruderman, through recent private communications, indicated to one

of us (Cameron) their expectations that, under the conditions in

which pions may be present in a neutron star (where np/nn is quite

small), there will be a predominantly repulsive interaction

between the pions and neutrons. This would raise rather than

lower the effective mass of the pions, which makes it very



unlikely that pions will be present in neutron stars.

COMPOSITE EQUATION OF STATE

As we go outward from the center of a neutron star, the

density decreases from the central value. If the central density

is higher than about 1015 gm/cm 3, we will have a mixture of

hyperons, nucleons, mesons and electrons in the central region,

neutron-dominated intermediate layers (with a small admixture of

protons and electrons), and outermost layers of electrons and heavy

ions. In this section we consider how the pressure depends on

density in these complex layers. The equation of state is most

conveniently expressed as:

P = PKE + PPE; e = eKE + epE
(io)

where P is the total pressure, e is the total energy density and

the subscripts KE and PE stand for the kinetic and potential terms,

respectively. The kinetic parts are expressed as

eKE = K n k_<_>4 2_-- (sinh t k - _)

n

Kn <M__>4 __k tk
PKE = T k_ n -- (sinh tk -8 sinh --2 + 3_)

(II)

where the summation is taken over all particles in (2) which are

present, and



K = M 4c5/(32n2_3)= 5.117 x 1035 dynes/cm 2
n n

ak = (21k+l) as given in Equation (5)

[(6_2,_ 1/3 1/3]
tk : 4 sinh-i L\a-'k-I l_"-"_" nk (12)

and the remaining notation is that given in the last section.

Each term in Equation (ii) corresponds to the partial pressure

or partial energy density (including rest mass energy) of

completely degenerate fermions k of a particular kind, and

applies to both non-relativistic and relativistic particles.

At the present time, the behavior of nuclear forces in

the high energy region is not well known. However, various

models of nuclear potential near the region of nuclear density

have been constructed by different authors (Brueckner and Gammel

1958; Brueckner, Gammel, and Kubis 1960; Sood and Moszkowski

1960; de Swart and Dullemond 1961; Serber 1964; and others). In

this paper, the neutron-neutron potentials as introduced by

Levinger and Simmons (1961) were utilized.

Levinger and Simmons introduced three forms of potential

designated V , V 8, and V , but due to the poor fit in our regionY

of most interest, V was not used in this paper. The V 8 is a

square well potential with a tail of the Yukawa type, and the

V is a complicated combination of exponentially decreasing
Y
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terms which in effect give rise to the same kind of properties

as V 8 . Both potentials V 8 and V are well behaved, velocity-?

dependent, and, with the assumption of charge independence, are

well fitted to the IS and ID phase shifts from 20 to 340 Mev.

They are utilized in this paper. They consist of static and

velocity-dependent parts of the ordinary and exchange integrals.

The ordinary static term V and the ordinary velocity-dependent
o

3 5

term _o are given in the analytic forms - _kf and 8kf , respec-

tively, where _ and _ are positive constants (which are

different for V__ and V , and kf is the Fermi wave number, which7

is related to number density by

n = kf3/(3 2) - (13)

On the other hand the exchange terms V (ordinary) and
' e e

(velocity-dependent) depend on kf in a complicated way. There-

fore, the potential terms of the equations of state are conveniently

expressed as:

epE = nV(n) = (-_kf 3 + 8kf 5 + 0.7Ve - 2We)Cn ergs/cm 3

f 8V b_ve. ---n---)/odyneslcm2= 2 bV(n)=[3 <-3_kf 3+58k 5>+n2< 0 7 _nP PE n 5n

(14)

where V(n) is the Levinger-Simmons potential energy per particle,



and

c = 1.602 x 10 -6 ergs/Mev

= 1.3a I, 8 = 4a 2

a I = 3.02, a 2 = 0.045 for V 8 (Mev)

a I = 4.02, a 2 = 0.28 for V (Mev) (15)7

The total baryon number density n is

(b denotes all baryons which are present). (16)

nb is related to tb through the last equation in (12). V ande

w e were determined numerically in the region 0 _ kf _ 2 (Levinger

and Simmons 1961). These values were plotted

5V e

slopes have been used to determine 5n and

against kf and the

_w e

_n " For kf > 2,

the results were extrapolated. This procedure is justified because

V and w are negligible for kf _ 3, as compared with the othere e

terms (kf is expressed in f-l, where f is in fermis, 10 -13• cm. )

The total energy per particle is plotted against density in

Figure 3, for the Levinger-Simmons V 8 and V potentials, the Skyrme7

potential and Saipeter's potential. For 1013 < p < i015 gm/cm 3,

the potentials are attractive and the total energy is less than

the case for the noninteracting particles. For p > I015 gm/cm 3,

the repulsive terms become dominant. In most of the region of



attractive potential V is somewhat lower than V_, but the7

repulsive term of V is much larger than that of the Vs. Nuclear7

potentials are negligible for p < 1013 gm/cm 3.

In the above equations, the potential terms were expressed

as functions of total baryon number density. This implies that

we have applied these potential interactions between baryons with-

out distinction as to the type of baryon. At the present time

general baryon interaction potentials are not known properly, so

the use of V8 and V in this way corresponds to slowly and rapidly7

increasing repulsive terms among baryons at high densities.

At densities less than or equal to nuclear density, the

character of nuclear forces is reasonably well known and is given

to a rough approximation by either of the two potentials adopted

here, and the composition of the matter is mostly neutrons, for

which the potentials were originally constructed. At much greater

than nuclear density many different types of baryons are

present, and the rapidity with which nuclear forces turn repulsive

is very speculative. Therefore, the two potentials V B and V 7

tend to span a range of possible behavior of the nuclear forces

at high densities and the differences in the neutron star models

which result from the adoption of one or the other of these

potentials will give an indication of the uncertainty due to lack

of knowledge in this field.



In the above equations of state, bosons are not included,

because the only bosons considered and listed in (2) are negative

pions, which are most unlikely to exist at densities below about

1017 gm/cm 3, while the equation of state becomes independent of

composition and the above Levinger-Simmons type equations of

state cease to be valid long before such high densities are reached.

This restriction is imposed due to two reasons. One is that in

the case of a perfect fluid there is a relativistic limitation on

the pressure that it cannot exceed one-third of the proper energy

density (Landau and Lifshitz 1959). The other more general

restriction which may apply in a fluid with anisotropic properties

is that the pressure cannot exceed the energy density (Zel'dovich

1962). If this were to be violated the speed of sound would

exceed the speed of light in the medium. Accordingly, the

Levinger-Simmons equations of state were cut off with one of

these pressure saturation conditions at the high density limit.

In order to determine the composite equation of state as

described above, we must know the equilibrium composition as a

function of density. To examine this problem, let us go back to

Figure 2. In region (I) the nuclear abundances as calculated in

a separate paper (Tsuruta and Cameron 1965) are valid. In the higher

density region marked (III) the hyperonic mixture as obtained

in the last section applies. Care may have to be taken in dealing



with the intermediate region marked (II). When the density

i0 IIis about 3 x gm/cm 3 (the point marked (a) in Figure 2) the

electron Fermi energy is about 23 Mev and nuclei such as 120St

will coexist with free neutrons. By the time we arrive at the

i013 g_/cm 3border (b), where the density is about 8 x , all the

heavy nuclei are expected to have disappeared, leaving neutrons,

protons and electrons in equilibrium. The exact behavior of the

transition in this region is quite complicated, but the same

principles, the conservation of total energy, charge and number

of particles, control the equilibrium in this region. To prevent

a discontinuous change in the ion number densities, it was assumed

that the average charge Z changes from 38 to 1 in a smooth way

from point (a) to point (b).

expressed as:

where

Then, the average ionic charge is

_,(p) = 1 + 37 X(P)

(P2-P)

X(P) - (p2_Pl) for Pl < p < P2 "

(17)

Pl is the density at (a), and P2 is the density at (b).

Strictly speaking electron density increases slightly as we

go from (a) to (b) with an increase of neutron density, but this

rise is negligible and not appreciable in Figure 2. This is

because the major part of the extra energy density as we go from (a) to
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(b) goes to neutron density. Figure 2 also indicates that there is

a rise in the total ion number density as the average ionic charge

changes from 38 to 1.

In the lower density region p 10138 x gm/cm 3 it is more

convenient if the matter density p, as defined below, is used

as a free parameter.

p= {Enn+(A-Z)nk(A,Z)]mn*Enp*Znk(a0z)]m _+n m
3 pJ e e

k

k represents all nuclei of appreciable abundance. Then the

(18)

energy density is expressed as

e = eKE+ epE+ p - n m - n m - n m
nn pp e e

The rest mass density of P,e,n must be subtracted because both

eKE and p include them. eKE is given by (II) with k = n,P,e; epE

o°

as given by (14) with n = n +n. The abundances of different
n p

particles as a function of density were taken from Tsuruta and

Cameron (1965). The expressions for pressure in Equations (i0) -

(16) are valid in this region with k = n,p,e and n = n +n . The
n p

contribution of interactions between electrons is always negligible

in the problem of neutron stars (Salpeter 1961) and hence such

terms are not included in the above equations. In this low

density region the main contributor to pressure is electrons or

neutrons. The effect of the presence of heavy nuclei appears in



the density but not in the pressure.

1013For the region p > 8 x g,vcm3-" the composite equations

of state as described above are most easily solved by choosing t ,
n

the relativistic parameter for neutrons as defined in Equation (12),

as our free parameter.

The solid curves in Figure 4 represent the final composite

equations of state of type V 8 and V . The nearly straight line7

in the lower density region corresponds to the electron-nucleus

configuration. Even though it is not apparent from the graph,

this line is found to be slightly bent downward if we examine it

more carefully, which is due to the decrease of Z/A with the increase

in density in this region. In high density regions (p > 1016 gm/cm 3)

the asymptotic equation P = c is seen to be approached. The difference

between the two potentials V 8 and V is apparent in the mostY

interesting region of 1013 _ p _ 1016 gm/cm 3.

GENERAL RELATIVISTIC EQUATIONS OF HYDROSTATIC EQUILIBRIUM

The most general static line element exhibiting spherical

symmetry may be expressed in the following form (Tolman 1934):

ds 2 = -e X(r) dr 2 - r2d8 2 - r2sin28 d_ 2 + e v(r) dt 2

(19)

For this line element and with the assumption that the matter

supports no transverse stresses and has no mass motion, the general



relativistic equations of hydrostatic equilibrium are expressed

as (Oppenheimer and Volkoff 1939):

dU(r) = 4_¢r 2
dr (20)

dP _ _ (P+c) (4v.r3p+U(r))
dr r (r-2U(r)) (21)

where P is the pressure and c is the macroscopic energy density

both measured in proper coordinates, and U(r) is the gravitational

mass contained within a sphere of radius r. The gravitational

mass of the star, M, is obtained by integrating (20) from the

center to R, the radius of the star, where P = 0.

In this section, we use the following system of units unless

otherwise stated: the units for which

C =G = 1

(c is the velocity of light and G is the gravitational constant),

and

4 5
M c

<n ):K
3223 n

= I/4_

The quantities in this system of units are_converted to those in

cgs units by multiplying them by the following conversion factors:



length: _ ( _ 13/2 cro _ _-/_ G_ - 1.37x
n n

106 -5R®cm = 13.7 km- i0

mass: m = r c2/G = 1.85 x 1034 gm = 9.29M®
o o

pressure: P = (M4c5/32n2_ 3
o n

density:

)4_ = 6.46 x 1036 dynes/cm 2

= Po/C 2 1015 gm/cm 3Po = 7.15 x

The gravitational mass M as defined earlier is the mass of

the star as perceived by a distant observer. This differs from

the proper mass, which is the mass the star would have if its

particles were dispersed to infinity. The proper distance and

proper time intervals in a gravitational field are determined

from:

drp = J-grr dr
(22)

where

-grr(1) = el(r. ) = (I - r2--M-M>

g44(r) = e = 1 -

-grr(r) = (I - 2U(r)>-ir

_(r)

-1

if r > R

if r < R

(23)



where U s is the chemical potential at the surface and u(r) is the

chemical potential at distance r, which can be expressed as:

_s = M(56,26)/56

_/(r) = (P + ¢)/n (24)

M(56,26) is the mass of a free atom of 56Fe, and n is the total

baryon number density. The proper mass M is obtained by integra-
P

ting the following differential equation:

dM 1/2

dr = 4rrpr2 <r-2U(r)') (25)

p is the matter density as defined by Equation (7) or (18). The

total binding energy in mass units _ is obtained by integrating

the following:

= 2 E Cr_2u(r)) 1/2- (26)

It is evident that the solution of the differential equations

(20), (21), (25), and (26) depends only on the equation of state

and on the boundary conditions at the center.

Examining the expression of the line element in Equations

(19) and (23) we note that the following inequality must be

fulfilled for any real solutions:



R > RG = 2GM/c 2 = 2.94 (M/M®)
in units of km.

(27)

The limiting radius RG is called the "gravitational radius"

When R = RG, a singularity occurs. This singularity is called

the Schwarzschild singularity. On this surface, the time metric

vanishes, the curvature of space becomes infinite and no light

emitted from this surface will reach us. Hence, we will face a

serious problem if the solution of the above equilibrium equations

gives rise to a radius less than or equal to the gravitational

radius.

In the problem of neutron stars, another interesting quantity

is the gravitational red shift which is obtained from:

_k GM 1.47 (M/M®) RG

k Rc 2 R(km) 2R (28)

RESULTS
i

The equilibrium equations (20), (21), (25), and (26) have

been integrated numerically with the aid of the 7094 computer,

for each of about 120 initial values of central density in the

range 106 _ cc _ 1026 gm/cm 3, for each of the composite equations

of state of type V 8 and V with the pressure saturation conditionY

P _ c. Additional integrations were carried out for the same



composite equations of state but with a different pressure satura-

tion condition, P _ e/3. The integrations were terminated at

the point where log ¢ = 0. (e c is the central energy density.)

The characteristic features of the resulting models of the

type V 8 and V with the asymptotic equation of state P = ¢ areY

given in Tables 1 and 2. Similar results were obtained for these

models with the restriction P _ e/3. The gravitational and

proper masses of these models (both with P _ e and P _ e/3) are

c
plotted as functions of the central matter density p in Figure 5.

The points where the respective form of the asymptotic equations

of state startto become applicable are marked by crosses. It is

clear that the individuality of the constituent particles becomes

c 1016indistinguishable for p _ gm/cm 3. The models lying along

the lower branch of the principal mass peak are stable, while the

models beyond this point are unstable (Tsuruta 1965, Harrison,

Thorne, Wakano and Wheeler 1965). Hence, the effect of the pressure

saturation condition P _ e or P _ e/3 is negligible for most of

the stable neutron stars. However, different assumptions of the

pressure saturation condition give rise to a small shift in the

values of mass, radius, etc., for models near and above the

principal mass peak. A small local mass peak is observed in the

intermediate region between the regions of white dwarfs and neutron

stars. This is the region where we assumed a smooth but crude



dissolution of ions into nucleons. The reality of this small

peak is questionable and requires further investigation. We

conveniently use the expression "pressure saturation condition"

to refer to the phenomenon that the pressure is not allowed to go

beyond certain limits which are functions of energy density.

"Ideal" gas models refer to models consisting of non-interacting

particles, and "real" gas models refer to the models for which some

interaction potential between baryons is assumed.

The mass-radius relation for the entire range of central

density is shown in Figure 6. The portion marked (I) belongs to

the white dwarf region. Around the region marked (II) lie a series

of models in the intermediate region where inverse beta processes

change the equilibrium composition rapidly with change of density.

Around the region marked (III) lie neutron and hyperon stars. The

solid curves represent our "real" gas models of V B and V type,7

and the dashed curve marked (a) and that marked (b) represent the

"ideal" gas and "real" gas models constructed by Ambartsumyan and

Saakyan (1962a), respectively. The masses are significantly increased

when the nuclear forces are taken into account. In the absence of

nuclear forces, the maximum mass of neutron stars is only about 0.67

of the mass of the sun, while it can be as large as twice the solar

mass in the presence of nuclear forces.

The radius of the models of type V B and V7 is plotted as a

function of central energy density in Figure 7. At the points



marked D, the models are as large as some of white dwarfs. The

1013 gm/cm 3density at the center of these models is about 4 7 x

These models have the interesting configuration of a small central

core of neutrons (with small concentration of electrons and protons)

surrounded by huge envelopes consisting of electrons and heavy nuclei,

whose exact composition changes from layer to layer as we approach

the surface. We shall call these envelopes "electron-nucleus"

envelopes. The possible existence of these extended envelopes of

electrons and heavy ions was first suggested by Hamada and Salpeter

(1961) and is confirmed in this paper. Other points marked by

crosses and letter symbols are some of the critical points as

defined in Table 3. The radius-central density relation in the

region of neutron and hyperon stars is shown in an enlarged scale

in Figure 8. The "ideal" gas models are also shown for comparison.

We note that the effect of the presence of nuclear forces on

stellar radius is not so significant as that on mass.

We have observed in earlier figures various critical points

where major and minor maxima and minima in masses and radius occurred.

These points are marked by letter symbols A,B C, etc., in the

order of increasing density, in Figure 9. The nature and charac-

teristic features of each critical point are summarized in Table 3.

One of the most interesting properties of cold dense stars is that

the stellar parameters such as mass, total baryon number, radius,
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binding energy, components of metric tensor, etc., exhibit damped

oscillations as functions of central density of the star. To

examine the behavior of these oscillations more closely, the

amplitude fall-off factor and the peak-to-trough separations for

each critical point of the oscillation of mass at sufficiently

high densities were calculated for our models of the V 8 and Vy

type with the asymptotic equation of state P = e. These values are

listed in the last two columns of Table 3. Theoretical values

of these quantities were predicted by Harrison, Thorne, Wakano

and Wheeler (1965) to be

Amplitude fall-off factor = exp (n_/8) = 3.95 for y = 4/3(P = ¢/3)

and

where

and = 6.147 for Y = 2(P = e)

(29)

c

A lOgl0 e = 2 x 0.4343 n/8 = 1.59 for y = 4/3(P = e/3)

and = 1:.578 for y = 2(P = ¢),

(30)

- 2 -

9 (ll I u'2 Y = the adiabatic exponent

(31)



At sufficiently high densities the approximation P = ¢ should be

valid for our real gas models of V 8 and V shown in Table 3. The¥

agreement between our results and the theoretical values in

Equations (29) and (30) is quite satisfactory within the estimated

order of accuracy. Figure 9 shows the damped oscillations of

radius and mass for the V models with P _ e. We see that the
7

oscillation of radius is somewhat out of phase with the oscillation

of mass.

To show the effect of having a composite hyperonic mixture,

the composite models and models calculated for a pure neutron

configuration are drawn together in Figure i0. The presence of

other subatomic particles lowers the partial pressure of the

neutrons, and, consequently, smaller stellar masses are expected

for the resulting composite models than for the pure neutron stars.

This effect of composition, however, is seen to be very small as

compared with some other effects such as the effect of nuclear

forces.

The internal distribution of matter is shown in Figure ii for

six models of interest. Their properties are given in Table 4.

The models marked (i) contain about 0.2 solar mass and consist

of large but condensed cores of neutrons surrounded by large

envelopes of electrons and nuclei. The envelopes are about I/3

in width of the total stellar radius. However, such envelopes



1014quickly diminish for slightly denser stars of- 4 x g.vcm3_s and

they are never important for models with higher densities. The

internal distribution of matter for stars denser than this is almost

c 1017 gm/cm 3constant until the density goes beyond e _ . For

higher densities matter starts to accumulate near the center and the

deviation from homogeneity becomes serious. For models with

cc _ 1018 gm/cm 3 the additional density appears only at the center,

leaving the rest of the interior practically intact. For instance,

c 1019 gm/cm 3 c 1024 gm/cm 3the model of ¢ _ and that of ¢ _ with

the same equation of state have practically the same internal and

external structure, except at the center.

The internal distributions of various stellar parameters are

given in Table 5, for two models of type V , the one lying just
7

below and the other just above the principle neutron mass peak.

It is interesting to note that the binding energy is negative in

the central core but it becomes positive in the outer layers.

The internal distribution of the radial and time metrics - grr(r)

and g44(r) for "ideal" gas models were studied by Ambartsumyan and

Saakyan (1962b). By comparing their results with our results for

the "real" gas models shown in Tables I, 2, and 5, it is obvious

that the non-Euclidean nature of space is more strongly pronounced

both in the interior and on the surface when nuclear forces are

taken into account.



When the central density of neutron stars is higher than

ordinary nuclear densities but is less than about 1015 gm/cm 3,

they are generally composed of a condensed neutron-dominant core

surrounded by thin or negligible envelopes of electron-nuclear

configuration. These stars were called neutron star models in

our discussion. The stars of densities higher than this consist

of a condensed hyperon-dominant core surrounded by thin neutron

dominant outer layers. These are called hyperon stars in this

paper. The electron-nuclear envelopes are always negligible for

these hyperon stars.

DISCUSSION

It may be noted that some of the characteristics of dense

stars depend greatly not only on the presence of nuclear forces

but also on the exact form of these forces. For instance, both

the radii and masses of the V type models of dense neutron and
7

hyperon stars are about twice as large as the corresponding values

of the V 8 type models. It is most desirable to further improve

the nuclear equation of state in the critical region of

1014-5 p _ 1016"5 gm/cm 3.

It is gratifying that the effect of the exact composition of

the hyperonic mixture is so small. Even if the threshold density

of the appearance of some of the mesons and hyperons is shifted

to as low as ordinary nuclear density, the resulting change of



composition will not seriously affect the major properties of cold

models of neutron and hyperon stars reported in this paper unless

there is a large accompanying change in the interaction potentials.

There are certain physical variables whose values are greatly

affected by the presence of nuclear forces but are relatively

insensitive to the exact form of the nuclear potential• These are

the variables which depend on the ratio of mass to radius. For

instance the red shifts of both the V 8 and V type models are about'

two to three times as large as the corresponding values for the

"ideal" gas models• The maximum red shift and the largest

departure from Euclidean space are noted at a point just above

the principal mass peak of the neutron stars (point F in Figures 6

and 9) At this point the red shift of both the V 8 and V type

i

model is about 0.32 while that of the "ideal" gas model is only about

0.15. The non-Euclidean nature of space is enhanced by a factor

of 2 when either the V 8 or V type nuclear potential is included•Y

However, the departure from the Euclidean characteristics is not

large enough to produce a Schwarzschild singularity for all the

models constructed in this paper. (See Equation (28)and Tables

1 and 2.)

A complicated effect of nuclear forces appears in the property

of binding energy. When the constituent baryons become relativistic

the binding energy, which is the proper mass minus gravitational



mass, becomes negative if nuclear forces are neglected (Tsuruta

1964, Misner and Zapolsky 1964). The same argument does not

necessarily apply when the interaction forces enter. Depending

on the different assumptions of the nuclear forces, the negative

binding may or may not occur. For instance, the binding energy

becomes negative for sufficiently dense models of "real" gases

constructed by Ambartsumyan and Saakyan (1962b), but all the other

nuclear models we have studied (the Levinger-Simmons V8 and V type,Y

and Skyrme type potentials) fail to give negative binding energies

for relativistic baryons.

It is interesting to note, however, that a small negative bind-

ing of about i% of the stellar mass occurs in the lower density

c 1013 gm/cm3regions of 1012 _ ¢ < 8 - 9 x , below the nuclear

densities. This is caused by the presence of relativistic electrons.

At these densities the concentration of neutrons _s not sufficiently

large to overcome the effect of relativistic electrons.

Some of the properties of cold degenerate stars seem to be

independent of the type of equation of state to be adopted. The

gravitational mass; the proper mass (or total baryon number) and

the binding energy exhibit damped oscillations in phase with each

other as functions of central density. Hence the point of tightest

binding is also the point of maximum mass and maximum baryon number.

We have seen that the stellar radius also oscillates as a function
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of central density but the oscillation is partly out of phase with

the oscillations of the masses. Other interesting variables, the

components of the metric tensor and the red shift, also show similaz

damped oscillations as the central density is increased. Their

oscillations are in phase with each other but are not in phase

with the oscillations of either the radius or the mass. These

properties are found to De common to all different types of equation

of state studied by us.

It may be noted that in the models of mass less than about

0.2MG, the binding energy is much less than i% of the total mass

(Table 1 and 2). Such models are energetically unstable against

transformation into iron white dwarfs (Cameron 1959). We have

noted that the models lying above the principal mass peak (point F)

are dynamically unstable. Hence the stable neutron stars, if

observable, are expected to lie in the small range of density

corresponding to the region 0.2M® _ M _ 2MQ. The binding energy

is only about I% of the total stellar mass for the lightest of the

stable neutron stars but at the mass peak it is as large as about

2_ of the observable mass.

Another outcome which may well be noted is the possible

importance of the "electron-nucleus" envelopes in some of the

lightest stable neutron stars. The most extended envelopes were

seen to occur in unstable regions, but it was shown that some of the



stable neutron stars could have quite an extended envelope

also, almost as large as the neutron core itself. The mass

contained in such envelopes is negligible. Therefore, any physical

variables which depend on radius can be greatly affected by the

presence of these envelopes. Red shift is an important stellar

parameter in the problem of observation. By neglecting the

envelopes of electrons and heavy nuclei, about 5_I error in the

value of red shift could occur for some of the lightest stable

neutron stars.
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TABLE CAPTIONS

Table i: Characterisitics of Composite Models of Degenerate Stars

with the Nuclear Potential V B and the Asymptotic Equation of

pC dynes/cm 2 'State P = c; is the central pressure in

P = (M 4c5/32n2_3_n=6.46x1036 dynes/cm 2
c

o n , c is the total

energy density at the center and pc is the total matter density

gm/cm 3at the center in , R is the coordinate radius of the

star, M, Mp, and _ are the gravitational and proper mass

and the binding energy in mass units, M@ is the mass of the

c
sun, t is the relativistic parameter for neutrons at the

n

center, g44(R) is the time metric and -grr(R) is the radial

metric at the surface.

Table 2: Characterisitics of Composite Models of Degenerate Stars

with the Nuclear Potential Vy and the Asymptotic Equation of

State P = ¢; the notation is that introduced in Table i.

Table 3: Properties of Critical Points; the letters A, B, C, etc.,

denote the various critical points in order of increasing

central density of the models ; MAX. I, etc., means the first

maximum point, etc.; MIN. 2, etc., means the second minimum

point, etc.; the capital letters in ( ) stand for the names

of the persons who recognized or identified these points

first (C = Cameron, H = Harrison, L = Landau, M = Misner,

O = Oppenheimer, HS = Hamada and Salpeter, T = Tsuruta,

V = Volkoff, WW = Wakano and Wheeler, and Z = Zapolsky); the



models HTWWare models constructed by Harrison, Thorne,

Wakano and Wheeler; IDEAL means the models with no nuclear

interactions, (AMn_I/AM n) stands for the amplitude fall-off

factor, and (ALOG ec) means the peak-to-trough separation

c

in the LOG e vs M/M® plane. Remaining notation is that

introduced in Table i. The second and third columns explain

the nature of the critical points designated A, Bo C, etc.,

the 4th column explains the type of model for which the

calculations in the last 5 columns were made, and the last

5 columns give the characteristic properties at these points.

Table 4: This table gives the properties of the models used in

Figure ii. The notation is that introduced in Table 1.

Table 5: Internal Distribution of Various Stellar Parameters for

two models of the Vy type. The model (A) is slightly less

dense and the model (B) is slightly denser than the configura-

tion of maximum mass. r is the radial distance from the

center, e(r), tn(r), -grr(r)' and g44(r) are the energy

density, relativistic parameter for neutrons, the radial and

time metrics, all at the point r from the center. U(r)/M®

and Mp(r)/MQ are the gravitational and proper mass of matter

in solar mass. units contained within the radius r, and

MB(r ) = M (r)-U(r)P
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TABLE 4

V B (i) V B (2) VB (3) Vy (i) Vy (2) Vy (3)

M/M®

R (kin)

LOG c c

LOG pC

C
t
n

pC/p O

0. 1996

18.219

14.5262

14.5137

1.476

7xlO -4

0. 9663

5. 1842

16.0216

15.9174

2.932

0.7

0.7710

4.063

23.8546

19. 0202

9.242

108

0.2003

17.79

14.3779

14.3678

1.326

5xl0 -4

1.9529

9. 940

15.4728

15.3369

2.422

0.2

1.4912

7.801

23. 8546

18.7216

8.374

108
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FIGURE CAPTIONS

-3
Figure i: Number densities in cm of various sub-atomic particles

as functions of total matter density in gm/cm 3 The symbols n• #

- _0, + - _O -p, A, _ , _ , _ , _ , e, _ , n* and p* stand for neutrons,

protons, hyperons corresponding to their respective symbols,

electrons, negative muons, and neutrons and protons in the

first excited state•

Figure 2: The composition distribution used in our composite

equation of state. The partial number densities of various

-3)constituent particles (in units of cm are plotted as

functions of total matter density (in gm/cm3).

Figure 3: Energy in Mev/particle is plotted against density in

gm/cm 3, for various nuclear potentials and for non-interacting

particles.

Figure 4: Pressure is plotted against energy density for the

composite equations of state of type V_ and V 7 , with the

asymptotic equation of state P = c.

Figure 5: The gravitational and proper masses of the models of

type VB and Vy with the asymptotic equation of state of either

P = ¢ or P = ¢/3. The points at which the composite equations

of state switch over to the asymptotic equations of state are

shown by crosses.



Figure 6: The mass-radius relation of the composite models of

the type V 8 and Vy with the pressure saturation condition

P < e (solid curves). The points A, B, C, etc., are the

critical points as explained in Table 3. The regions (I),

(II), and (III) are the regions of white dwarfs, the inter-

mediate regions, and the regions of neutron and hyperon stars.

The dashed curves are the "ideal" gas models (a) and "real"

gas models (b) constructed by Amburtsumyan and Saakyan (1962a).

Figure 7: The relation between the radius and central energy

density for the composite models of the V 8 and Vy type. Some

of the critical points in low density regions are shown by

crosses and the corresponding letter symbols as introduced

in Table 3.

Figure 8: The relation between the radius and the central energy

density in the region of neutrcn stars is shown in detail.

For comparison, the models of "ideal" gases are shown as a

dashed curve, together with the "real" gas models of the

V 8 and Vy type (solid curves).

Figure 9: The damped oscillations of the gravitational mass and

radius as functions of central energy density. The regions

(I), (II), and (III) are those defined in Figure 6. The

points A, B, C, etc., stand for the critical points explained

in Table 3. The peaks and troughs of mass and radius are

shown bv the respective marks.
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Figure I0: The effect of the presence of hyperons. The models

of the V B and Vy type are shown both for the configuration

of pure neutrons (dashed curves) and for the baryonic mixtures

(solid curves).

Figure ii: Internal distribution of energy density for 6 models

whose characteristic properties are listed in Table 4. The

solid curves represent the V_ type models and the dashed

curves represent the V B type models. These were selected

from (i) the region of the lightest stable neutron stars,

(2) the region near the principal mass peak (point F in

Figure 9), and (3) the region of superdense stars with

c 1024c _ gm/cm 3 .
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ABSTRACT

Surfaceproperties, temperature effects, cooling behavior,

and observability of neutron stars have been studied. For this

purpose the opacity of the surface layers is calculated both

for a pure iron and a pure magnesium composition. It is found

that the non-degenerate layers are only a few meters thick and

in no case exceed i% of the stellar radius. The star cools mainly

through neutrino emission when T _ 1 _ 4 x 10 8 OK, but at lower

temperatures the cooling is primarily through electromagnetic

radiation. The neutrino cooling mechanisms included were the

neutrino plasma process, the URCA process, and the neutrino

bremsstrahlung process. The cooling behavior is quite compli-

cated. The rate of cooling generally depends on mass, nuclear

potential, and surface composition, among which the dependence

on mass is the most significant. It will be hard to observe

low mass neutron stars due to fast cooling rates. However,
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medium and high mass stars should still have temperatures

exceeding about 2 x 106 OK on the surface for times of the

order of 103 to 105 years. Hence it should not be imposs-

ible to observe massive neutron stars relatively close to

us, if there is no x-ray emission of larger flux coming

from the surrounding region.

INTRODUCTION

From studies of nucleosynthesis and stellar evolution

it appears likely that the remnants of some supernova ex-

plosions will probably contain _ central core of highly

condensed matter of the order of nuclear density whose main

composition is neutrons, and of surrounding envelopes of

ejected material which are expanding continuously (Arnett 1966,

Cameron 1959 a, b, 1965a, Chiu 1964, Colgate and White 1965,

Zwicky 1938, 1939, 1958). The central core, which may

become as hot as _i0 II OK at the peak, will cool down to

-5
_i09 OK within NI0 sec or so (Chiu 1964), due to the extremely

high rates of neutrino cooling. Whether the

remnant, if a stable neutron star, will ever be detectable

depends critically on the cooling behavior of the neutron

star itself and on physical conditions in the ejected en-

velope.

When the first, crude, information on the recently
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discovered galactic x-ray sources became available (Bowyer,

Byram, Chubb and Friedman 1964 a, Giacconi, Gursky, Paolini

and Rossi 1962, 1963, Fisher and Meyerott 1964), it was

tempting to identify these x-ray sources with neutron stars,

for a neutron star of photospheric temperature T _i06 to• e

]07 OK would emit soft x-rays with peak near 30 _ 3_ if it

can be regarded as a black body. The first series of cool-

ing calculations showed that neutron stars of this range of

temperature can be sufficiently luminous and last sufficiently

long to be consistant with the early observational data (Chiu

and Salpeter 1964, Morton 1964, Tsuruta 1964). In the mean-

time, possible cooling mechanisms have been reexamined and

some faster cooling mechanisms have been proposed (Bahcall

and Wolf 1965 a, c, Finzi 1965a, Tsuruta and Cameron 1965 a).

The results of our latest calculations (whose details are

given in this paper) indicate that a neutron star with

T _I07 OK will cool too fast, 1 day to i0 years (for models
e

of different mas_,tobe detected as x-ray sources, but that

if T _2x106 OK, the medium and high mass stars will last
e

sufficiently long for detection (_I03_5 years). The conclusion

is that the cooling rate alone does not exclude the possibility

that some neutron stars will be detectable, provided that the

thermal soft x-ray emission exceeds the nonthermal background

from the ejected envelope.



If we look at a bare neutron star in a vacuum, there

would be several characteristic features which could be checked.

For instance, a neutron star (of radius _ i0 km) should appear

to be a point source, and the x-ray spectrum from it should

approximate that of blackbody radiation. A lunar occultation

measurement conducted by Boyer, Byram, Chubb and Friedman (1964 b)

showed that the source in the Crab Nebula has a diameter of

about one light year. Clark (1965) and others reported that

the same source emits a significant x-ray flux in _ 30 key

region, which is inconsistant with the spectrum of a blackbody

radiation from a surface of a few million degrees. The M_IT

and American Science and Engineering group and the Livermore

group reported that the spectrum of the strongest x-ray source

in Scorpius is inconsistent with the hypothesis of blackbody

radiation (Giacconi, Gursky and Waters 1965, Chodil, Jopson,

Mark, Seward and Swift 1965). These observational results

seem to indicate that the observed x-rays from some sources

do not consist alone of blackbody radiation from a neutron

star. However, we cannot conclude that these results are

evidence against the existence of neutron stars.

One of us (Cameron 1965 b) suggested that a possible

model of an x-ray source may be a vibrating neutron star

with an associated magnetosphere and surrounding hot



gas clouds. (Also, see Finzi 1965 b). The central

neutron core may emit thermal x-rays and the

surrounding area may emit non-thermal x-rays (either

synchrotron radiation or bremsstrahlung). The question of

whether the observed x-rays are thermal, non-thermal, or

a mixture will require more extensive observations. Some

of the recent experiments quoted above only suggest that

the thermal component is not the main contribution to the

observed x-rays, and that the effects from the surrounding

envelopes are dominant. The problem of whether we can dis-

tinguish between the thermal component from the neutron

star and the non-thermal components from the surrounding

area will be considered in the last section of this paper.

As long as there is a possibility that neutron stars are

related to the galactic x-ray source, directly or indirectly,

the study of neutron stars will continue to be of astronomical

importance, as well as of fundamental importance in general

relativistic physics.

In our earlier paper (Tsuruta and Cameron 1966) pro-

perties of neutron stars which are independent of temperature

were studied. Here we discuss some thermal properties of

these neutron stars. For this purpose six typical models

have been chosen from our first paper. Three of these are



based on the V type of nuclear potential, and the other

three are based on the V type of potential. The different
V

types of potential correspond to different assumptions about

the possible nuclear forces which will govern the interactions

between the constituent baryons. Among the three models for

each type of potential, one is of low mass at the low density

base of the principal mass peak, one is half-way up the peak,

and the other is near the top of the peak. The characteristic

properties of these models are listed in Table i. Each model

is designated by its potential type and approximate mass value.

It has been suggested that a model with density _ > 8 Pnucl(Pnucl

is the nuclear density=3.7 X 1014 gm/cm 3) is unreliable (Bahcall

and Wolf 1965 a, b) due to the uncertainty in high energy

physics. Our model (VB,IM®) is denser than this critical limit.

However, all other models lie roughly within the limit of val-

idity and the general conclusions deduced from these models are

expected to be reasonably reliable.

Typical models of quite different mass value and nuclear

potential have been chosen in order to avoid as far as possible

the danger of drawing general conclusions from limited assump-

tions. The main approach was, therefore, to set upper and

lower limits which define the range where the most probable

models of neutron stars would lie.



In the following sections the surface properties of

neutron stars will be studied first, the cooling and re-

lated calculations will be presented, and finally the

problem of detectability will be discussed•

ENVELOPE STRUCTURE EQUATIONS

The structure equations for the outer layers of a

neutron star are:

(i)
dP •r [ Pr/c2_ -O(r) ]G (4_r. 3Pr/c2+Mr)

dr - - r(r-2%G/C 2)

dM

(2) _ = 4_r2 (r)
dr

For radiative equilibrium or electron conduction:

(3)

dT
r 3 %(r) _ (r) L

dr
4 ac T 3 4_r 2

r

For convective equilibrium:

r_ i- _xr ___[r
(4) dr P dr

r

where Mr, Tr' Pr' p(r) and K(r) are the mass, temperature,

pressure, density and opacity at a distance r from the center,

L is the total luminosity of the star, G is the constant of

gravitation, a is Stefan's radiation constant, c is the vel-

ocity of light, and F is the ratio of the specific heats

c /c
p v

The assumption was made that the star _ is spherically

symmetric and in hydrostatic equilibrium and that there is no



energy generation or sinks in the envelope. The general

relativistic expressions are used in the hydrostatic equa-

tions (i) and (2) because the general relativistic effects

are quite important even near the surface for some of the

denser stars (Tsuruta and Cameron 1966).

Near the surface, the above equations are more easily

integrated in electronic computers if they are expressed

in logarithmic form, and it is better to use pressure as

an independent variable because the pressure gradient is

quite high near the photosphere of neutron stars. Then

Eqs. (1)-(3) can be expressed as:

exp (6np . 6nA-_nB-6nG-_nD)
r

(5)
d (6nr)

d(tn_ )= -

d (tnP r

(6)

d (6nTr )

d (6nP r

(7)

exp (3 6nr-6nMr+6_4E_tnp(r )

G

+6nP +6nA-6nB-6nD)
r

exp [tn(3/16nacG)+{n (r)+_nP(r)+6nL-46r_ -_nr

+tnP +tnA-tnB-6nD]
r

where

A=exp (6nr)-exp (6n2+6nM-26nc+6nG)
r

(8) B=exp (6np(r)+exp (,P,nP-21,nc)
• r:

D=exp (6nMr)+ex p (_n4_+36nr+_nPr-26nc)
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The equation of state in non-degenerate layers is

(9)

P =_/i +_ 1 T 4
+_a

_e _ion H

where the first term is the gas pressure and the last term

is the radiation pressure. In degenerate envelopes, all

pressures except the degenerate pressure of electrons are

negligible and the following equation for degenerate electron

gases is applicable:

(io)

3

P=A f(x); p,,n_H = B X X=PF/meCe

f(X)=X(2X2-3) (X2+I)½+3 sinh-ix

A=_m 4c5/(3h3) =6.01x1022 B=8_m 3 3 eH/3h3=9"c 82xi05 _ee ' e "

and are defined as
_e _ion

_e = [ _{ A{n(A_Z_) ]/ [l_ Zi n(A.l, Z.l ) ]

(ii)

= [_ A_n Z_)]/[7. n(A. Z )]
Ui°n _ (A4%' i l' i

J

where n(A. ,Z. ) is the number density of the nucleus i of
l l

mass number A. and atomic number Z., H is the proton mass,
1 l

and the remaining notation is conventional. The equilibrium

composition of matter as found by Tsuruta and Cameron (1965b)

was used. In the envelopes of neutron stars the equation of

state is relatively simple as shown above, but the behavior

of the opacity is quite compiicated. For this reason, the

opacity is treated separately in the next section. Generally,



great care has to be taken in evaluating F if the envelopes

are in convective equilibrium. However, as is shown

later, convection appears to play no role in neutron

stars.

To obtain a proper boundary condition at the surface,

it was assumed that the ordinary theory of stellar atmospheres

would apply in the atmospheric layers above the surface of

neutron stars, provided that general relativity effects are

correctly taken into account in some of the denser models.

The surface of the star is defined as the point where the

actual temperature is equal to the effective temperature Te

(the temperature of the black body which would radiate the

same flux as the star itself). Then the total luminosity of

the star L is expressed as

(12)

is Stefan's constant.

L = 4_aR2T 4
e

If we assume that the opacity is independent of both height

and wave length in the atmosphere but that it has the constant

value determined at the photosphere, the theory of radiative

transfer in stellar atmospheres lea_us to the following

simple relation:

(13) Pph
= rTs g (Pph, Pph ) 2 g (Pph' Pph )

dT =--

o _(_)ph,Te ) 3 _(Pph' Te)

where Ts is the optical depth at the surface, (Pph, Te) is the



opacity at the photosphere and the general relativistic form

(14) g= -_2 ',-2--q--_+ --

"Pph c ....._ MC 2 -'\ RC 2.

The subscript ph stands for the value of the respective vari-

able at the photosphere. Noting that the mass content and the

thickness of the atmosphere of neutron stars are negligible,

the radius and the gravitational mass of the cold models of

neutron stars can be used for R and M above. Then equations

(9), (13) and (14)evaluated at the photosphere give us

sufficient boundary conditions at the surface of a neutron

star of surface temperature T
e

OPACITY

The total opacity K in a neutron star can be expressed as

1 1 1

(15) _ KR K c

where KR and _c are the radiative and conductive opacity,

respectively. Radiative opacity is due to the various pro-

cesses of atomic and molecular absorption, emission, and

scattering of radiation in which electrons play the major

role. The relative importance of these processes depends

strongly on the temperature-density combination. For in-

stance, in matter of high temperature and of relatively low



density, electron scattering is dominant, while in the region

of intermediate density and temperature the various photo-

electric effects are the most important. In degenerate matter

of high density, electron conduction is the most efficient

mechanism. The major processes of atomic absorption are

the bound-free, free-free, and bound-bound processes. Excited

electrons emit photons in the inverse processes. The scatter-

ing processes are Thomson scattering if T_5xl08 OK and Compton

scattering for higher temperatures.

The opacity generally depends on density and temperature

in quite a complicated way. In recent years, various ex-

tensive tables based on detailed computations have been

published which give the absorption coefficient for many

different compositions and for a large number of points in

the temperature-density diagram. The most accurate method

of obtaining opacities at present appears to be through use

of the computer code for opacities constructed by A.N.Cox

and his colleagues of the Los Alamos Scientific Laboratory

(Cox, 1961), which includes most of the possible major

processes contributing to opacity, and this code was kindly

made available for our calculations. It includes bound-

free and free-free abosrption, electron scattering (both

Thomson and Compton scattering), negative ion absorption
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and electron conduction. The bound-free absorption depends

on the equilibrium number of electrons which are bound in

the various atomic states. When the ionization of one ele-

ment is completed, no more bound-free absorption due to that

element can occur. For high densities the effect of de-

generacy is taken into account in all but the electron

scattering term. At low densities and low temperatures not

all electrons are ionized. An ionization code was used in

conjunction with the opacity code in these regions to cal-

culate the degree of ionization, the partial pressure of

electrons, and the number of free electrons in the opacity

calculations.

At temperatures above about 5x10 7 OK, almost all ele-

ments are ionized. The existing tables are used to obtain

absorption cross sections for various kinds of processes.

The electron scattering term is obtained for the non-degen-

erate case, and pair production of electrons and positrons

is not considered. Therefore, the opacity is independent

of density but dependent on temperature in the high tempera-

ture region where Compton scattering is dominant. Different

approximations are applied for different degrees of de-

generacy to evaluate the conductive opacity.

Values of the opacity were calculated for a pure iron



composition and a pure magnesium composition, in the range

of temperature from 103.7 OK to i0 I0 oK, and of density from

10-4.3 gm/cm3 to 1014 gm/cm3. The reason for these particular

choices of composition is explained in the next section.

Opacities at densities higher than 1014 gm/cm3 have not been

included because degeneracy sets in at densities far below

this. Calculations at temperatures higher than i0 I0 OK has

not been carried out because the assumptions of nondegenerate

electron scattering and no electron-positron pair creation

cause serious errors there. Also, neutron stars of tempera-

ture higher than this are of no interest to us because they

would cool too quickly. The case T <103.7 OK and _ <10 -4.3
e

gm/cm 3 was not included because the opacity code did not

work in these low temperature, low density regions.

Results obtained are plotted in Figure i. The solid

curves represent the opacity of iron 56 as a function of

density at different temperatures, while the d_shed curves

represent the same for magnesium 24. The opacity shows quite

a complicated dependence on density and temperature in the

region p _i06 gm/cm 3 and T_I08 OK, where the transition from

electron scattering or electron conduction to bound-free

opacity occurs. The almost straight horizontal lines for

T>I09 OK and p_106 gm/cm 3 are due to Compton scattering.

The almost straight lines of negative slope in the region



of high density are an indication that electron conduction

is the dominant factor in the transport of energy there.

We can assume that degeneracy starts as soon as the opacity

in Figure 1 starts to follow one of these straight negatively

sloping lines. The opacities (In_) thus obtained have been

stored as an input deck of cards in the form of a two-dim-

entional table corresponding to given inT and inp combina-

tions, for later use.

The results from the opacity code calculations were

checked in the various asymptotic regions of density and

temperature, using simpler, analytic approximations. In the

region where photoelectric effects are dominant, the Kramers •

opacity formulae (see, for instance, Schwarzschild 1958)

were used. _ne opacity due to electron scattering was checked

through the equations given by Sampson (1959). In order to

check the opacity in the region of electron conduction the

relations in Schatzman (1958) were used. The agreement was

quite satisfactory. It turned out that the neglect of degen-

eracy and electron-positron pair creation in the formulae

for electron scattering in Cox's opacity code causes no

serious errors in the problem of neutron stars.



ENVELOPESAND THEIR CHARACTERISTICS

A computing program has been prepared for the 7094 com-

puter which carries out the surface integrations and other

related computations automatically. The program was constructed

so that the equation of state automatically switched over from

Equation (9) to (i0) as soon as the point was reached where

these two became equal. The surface boundary values were

calculated through the subroutine for the atmosphere whenever

a new set of values of radius R, mass M and photospheric

temperature T of the star were given. The interval of in-e

tegration _in P was automatically adjusted so that the change

of every variable was kept smaller than a suitable preassigned

limit. For a given in T and in 0 combination the correspond-

ing opacity (inK) was obtained by linear interpolation in the

input opacity table. The surface boundary values of two

(V 2 M_)typical models of stable neutron stars ,0.6 MQ) and _7'

with a pure iron atmosphere are shown in Table 2.

To determine the temperature distribution in a typical

neutron star envelope, the integration was first carried out

from the photosphere down to the point where p=1014 gm/cm 3,

for a representative model of M=I M and R=I0 km. This was
®

repeated at several different surface temperatures. The

results are shown in Table 3. The temperatures at different



densities are listed in terms of the given surface tempera-

ture T
e Tb and Pb are the temperature and density where

degeneracy starts (where equation (9) gives the same pressure

as equation (i0)). Degeneracy starts at about Pb=106 gm/cm3

when T _i0 7 OK. But when the surface has cooled down to
e

106 °K, degeneracy sets in at Pb=104 gm/cm3. A signi-about

ficant result is that even after the degeneracy boundary

has been passed, the temperature still continues to goup as

we go inwards. The fractional rise in temperature as the

density increases from 106 to 109 gm/cm3 is about 10% when

T =7.7xi0 5 OK but at T =10 7 OK the temperature at the point
e ' e

p=10 9 gm/cm 3 is about 3 times that at p=10 6 gm/cm 3. As we

go in toward the center from the point with p=10 9 gm/cm 3 to

12
p=10 gm/cm 3, the fractional rise in temperature is about

0.5% for T =10 6 OK and about 3% for T =10 7 OK. The table
e e

shows that the temperature gradient is completely negligible

for density higher than about 1012 gm/cm 3. The conclusion

is that the temperature gradient is very high in the outer-

most thin non-degenerate layers; the temperature continues

to rise as we go through the degenerate outer layers of

heavy ions and electrons, but the inner neutron core (with

p_ 1012 gm/cm 3) is isothermal even for the models of the

hottest neutron stars. Hence, the core temperature T (which
c
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is also the central temperature of the star) can be defined

as that temperature where p=1012 gm/cm 3.

The central temperatures are plotted against surface

temperatures in Figure 2. The solid curves are for Fe and

the dashed curves are for Mg atmospheres. Curves drawn for

three models of the V type are marked by the corresponding
V

mass. Similar but simpler calculations were made by Chiu

and Salpeter (1964) and Morton (1964). Their central tempera-

ture was defined to be the temperature where the degeneracy

sets in (our %), but we have noted that the temperature

continues to rise considerably as we go inwards passing the

degeneracy boundary (T >%). Therefore, our central tempera-c

ture should be higher than their values in general. However,

in high temperature regions where the electron scattering is

the most important mechanism for the opacity, they used the

constant value _0.2 cm2/gm, Thomson scattering opacity
• #

while the Compton scattering included in Cox's code which

we used lowers the opacity from the constant value of Thomson

scattering. This, in effect, lowers our values of central

temperature. These two causes of discrepancy compensate one

another and there is good general agreement among our results

and their results for T >109 OK. We see in Figure 2 that the
c

central temperature is somewhat lower for Mg than Fe at the
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same surface temperature. This is due to the fact that some-

what lower opacities are associated with Mg than Fe as is

revealed in Figure i. For some of the coolest neutron stars

(T _i04 OK) the central temperature is only about i0 times
e

the surface temperature, while for hot models ( of T _i07 OK)
e

the core is about i00 times as hot as the surface. In any

case, however, the ratio of the central temperature to the

surface temperature is quite small as compared with that of

ordinary stars.

To examine the region near the surface more in detail,

temperature is plotted against distance from the photosphere

as measured inward in Figure 3. Each curve is marked by the

surface temperature. The model with one solar mass and i0 km

radius is used to illustrate the general behavior of the

surface properties. The crosses marked by X=2.5 represents

points where the degeneracy starts. This criterion for de-

generacy is derived from the fact that the kinetic energy of

a non-relativistic fermion (about 3/5 of the Fermi energy E_

and the thermal energy of a free particle with no internal

degrees of freedom (3kT/2) should be equal at the boundary

between the non-degenerate and degenerate layers. The re-

sult of the present calculations shows that even for the

hottest models degeneracy starts before we go inward by I00



meters from the surface-and that the non-degenerate layers

are less than i% in thickness for even the hottest models.

The mass contained in the non-degenerate envelopes is

practically zero. In our previous paper (Tsuruta and

Cameron 1966) it is seen that the amount of mass contained

even in the inner degenerate electron-ion envelopes is very

small compared to the total stellar mass. These results

more than justify our previous assumption of constant mass

and radius in the atmospheric calculations and also the

neglect of non-degenerate layers in determining the total

mass and radius of the star in our previous paper (Tsuruta

and Cameron 1966). Hot neutron stars with T _i07 OK have
e

non-degenerate envelopes of about i0_20 meters thick but

when the surface temperature falls to about a million degrees

the thickness of the non-degenerate layers becomes only about

a meter or so. A typical neutron star with the sun's mass,

i0 km radius, and 6.7xi06 OK at the surface (with _I00L ) is
®

shown to have non-degenerate envelopes of 3_4 meters.

The density profile near the surface is plotted in

Figure 4 for the same model.

is now shown in centimeters.

The distance from the surface

Within about a meter (0.01% of

the radius) from the photosphere, the density rises to about

i0 gm/cm 3 when T _i06 OK and to about 102.5 gm/cm 3 for
e



hotter stars (T =l.6x107 OK). In the photosphere the density
e

rises within a thickness of i0 cm by a factor of about i00

for typical models (T _I06 OK). In any case a sharp drop
e

of density from the central value (1014 _i015 gm/cm3) to

the photospheric value (0.01_i gm/cm3) occurs only at the

very edge of the star.

The distribution of density, temperature and degree of

degeneracy EF/kT within the thin layers about i0 meters from

the surface are numerically shown in Table 4 at several in-

teresting values of surface temperature. On comparing this

table with the previous one, we see that the degeneracy

criterion used in these two tables agrees well with each

other.

The conclusion according to the present calculation

is that neutron stars of about 103 times solar luminosity

7 oKare as hot as i0 at the surface and about 109_10°K in the

interior, those which are as luminous as the sun (in the

x-ray region) are about l_2x106 OK at the surface and about

108_9oKin the interior, and that by the time they cool down

to the point where T _i06_7 OK and T _i05 OK they are too
c e

faint to be detected (L_I0 -5 LG). In our previous papers

(Tsuruta and Cameron 1965b, 1966) it was shown that the composi-

tion of the surface layers changes sharply from layer to



layer. Starting from the boundary between the neutron core

and the degenerate electron-ion envelopes the composition

changes from more neutron-rich heavy nuclei to less neutron-

rich ones as we go outwards. In the outermost non-degener-

ate layers with P<I06 gm/cm3, the main equilibrium composi-

tion should be ordinary iron ......... _ m_g_v_ .... !e ........ s why

iron was chosen in our opacity calculations.

A possible change of surface composition can occur if

a diffusion process is present. The diffusion process can

become quite efficient in the presence of very small density

scale heights and large gravity effects, as is the case in

the atmospheres of neutron stars. Rough estimates of the

effect of diffusion on the surface composition of neutron

stars were made by Chiu and Salpeter (1964). Their con-

clusion is that some lighter elements such as Mg, O and Ne

can be present on the surface of neutron stars. This is

why not only Fe but also Mg was selected in our opacity

and atmospheric calculations earlier. The change of com-

position will not occur if convective mass motions in non-

degenerate layers cause efficient mixing of elements. In

this case the original statistical equilibrium composition

of iron will be maintained. However, convection appears

to play no important role in neutron star problems since
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the temperature gradients in our model atmospheres are all

subadiabatic. At the present time, the effect of the dif-

fusion is not known. However, the difference between our

results for Fe and Mg compositions is relatively small.

This indicates that the uncertainty of surface composition

due to the effect of diffusion will not cause any serious

errors in our ;esults presented in this paper. We will

see that the uncertainties due to other effects are far

greater.

ENERGYCONTENTOF A NEUTRONSTAR

If we assume that a neutron star belongs to the end

state of a thermonuclear evolution, there can be no energy

generation within it. Any stable neutron star is already

so dense that gravitational potential energy due to con-

traction is not available. Even though the matter is

highly degenerate, the only contribution to the totai

energy of a stationary neutron star comes from the small

tail of the Fermi distribution function of the particles

which constitute the star. The heat capacity of a nearly

zero-temperature ideal Fermi gas was derived by Chandrasekhar

(1957). Using his result, the total thermal energy of a

neutron star was found to be

I/2_ 2 _2
Jn i 4nr dr _2



F,
where _i = Pi/(mic)

F
m., P. and n are the mass Fermi momentum and number densityl l i

.th
of the i particle, R is the stellar radius and T is the

temperature of the isothermal core. The summation was taken

over all the baryons and leptons present in each layer dr.

The total energy was calculated as a function of temperature

for our models. The results are shown in Tables 5 - i0. It

is seen that as the surface temperature of a star decreases

from about 5 x 107 OK to 104 OK the energy content of the

4O
star decreases from about 1050 ergs to i0 ergs, although

the precise value depends on the type of model in question.

In the above derivation the nuclear interaction between

particles was neglected. The presence of nuclear forces

will modify the heat capacity by an amount which typically

can be of the order of factor 2, according to rough estimates

which we have made. We did not take such modifications into

account in making the ac?ual cooling calculations, because

the uncertainties arising from other sources are far greater.

NEiTTRINOLUMINOSITY

The conserved vectorcurrent theory of weak interactions

predicts that neutrino-antineutrino pairs can be radiated

in quantum electrodynamic processes as well as electromagnetic



radiation. Even though the probability for the neutrino

radiation is enormously small, it plays an extremely import-

ant role in some stages of stellar evolution because of the

fact that the neutrino mean free path is so large that it

can escape even from a dense star with hardly any inter-

action, while electromagnetic radiation can only diffuse

out very slowly from the interior to the surface. Various

different neutrino processes possible in a stellar interior

have been examined. Consequently, the following three

processes have been found to be the most important in the

problem of neutron stars.

(i) Neutrino pair emission from the plasma process:

(17) ¥ (plasmon)_v +Le e

These neutrinos arise from the decay of plasmons in the

degenerate electron gas in the interior of the neutron star.

The rates are given by (Adams, Ruderman and Woo 1963, Inman

where

and Ruderman 1964);

1 (ergs/cm -sec)=l. e
_O

F (X)=_=i K2 (nX) or
nX

i 2 i
X3F(X)=2_(3)+gX _nX-_(2_n2+I)x2+x46nX

96

1 (_n 2-½+_n 217" - _'(2)_ X4-_ _(2) _! for X<2_

(18) 2

.flh _ ("l__r "h rr , _ 4',nnC(3)=n_=l [._'/J;C(2)= =1 _. 2 = 6 ; - ¢ (2)= =1 T
n n n

_w w2:4TTe2j r d3_ f(-_ (
X_T ' Ep

-2

i-½ P_ "h -_ 4e2PF3/(31_ EF)

E
D



EF = (P2F + m2)½e ' PF = (3_2 n)c 1/3

for relativistic degenerate electrons. (In the last three

equations the units are _ = c = i.) Then the neutrino

luminosity due to the plasma process is

(19) Lp6 = _R Q 4_r2dr (ergs/sec)
v p%

To evaluate the above integral, a table listing F(X) as a

function of X and the interpolation subroutine were used.

The plasma neutrino emission rates have been calculated as

a function of temperature and electron number density and

are shown in Figure 5.

(2) The URCA process (the beta process and its inverse

process)- In the interior of a neutron star it can be

represented by reactions such as:

(20a) n + n _ n + p + e- + _e

(20b) n + n _ n + p 4. _ + v

(20c) n + p + e- _ n + n + v
e

i

(20d) n + p 4- _i --, n + n + v'

The approximate formulas for the rates of these processes



for a neutron star of uniform density distribution have been

We applied their

The neutrino luminosity

derived by Bahcall and Wolf (1965c).

results to our neutron star models°

due to the URCA process can then be given by

L URCA RI020 (I+F) 8 2/3 2
v = Jo T 9 (p/Pnucl) 4_r

(21) = PF(e) =

dr (ergs/sec)

[l-2.25(Pnucl/p)4/3] I/2 for p>lo8Pnucl

= 0 for p < 1.8 Pnucl

where p is the density of the neutron star matter, Pnucl is

o 1014the density of nuclear matter (= 3 7 x gm/cm3), T 9

is the stellar temperature in units of 109°K, PF(i) is the

.th
Fermi momentum of the i species.

(3) The neutrino bremsstrahlung process: In the interior

of a neutron star it can be symbolically expressed as

(22) (baryon) _ _aryon) _ + --ve- + _ e- + + Ve e

The neutrino pairs are emitted when electrons scatter from

positive or negative baryons in the interior of the neutron

star. Ruderman and Festa (private communication) have

kindly provided us with the following approximate preliminary

expression for this process:



n
m 2

(23) QB(ergs/gm-sec) = 106 Z2 nZ(T9)6 for EF >> mc

where Z is the effective charge of the electron scattering

centers, n is the number density of such centers, and n
z

we take here to be the baryon number density. Ruderman and

Festa have suggested that there may be proton clustering in

neutron star interiors in the presence of very large numbers

of neutrons, so that the effective charge of a scattering

center might be 2. However, for some of the massive neutron

stars in which the density exceeds about 1015 gm/cm 3 there

will also be a large number of Z- hyperons, which may hinder

the clustering process° In such a case, we have chosen to

take the effective charge of a scattering center to be 1 and

to count as the scattering centers both the protons and the

Z- hyperons. The possible error caused by the uncertainty

due to the different interpretation of the scattering centers

and the effective charge is in any case negligible in our

present problem° The neutrino luminosity due to the brems-

strahlung process is

B
(24) L

r'R 2

b QB _ 4rr r
o

dr (ergs/sec)

The total luminosity is obtained by adding all the

contributions



÷ Lp6 + L URCA + L B o(25) L L
ph _ _ v

L is the photon luminosity defined by (12).
ph

The results are shown in Tables 5-10. To visualize the

contributions of different processes, the three different

neutrino luminosities and photon luminosity, together with

the total energy, are plotted against the central temperature

for the model (Vy, I.IM ) and shown in Figure 6. At higher
®

temperatures the URCA process and the plasma neutrino process

compete with each other but the URCA process is always the

most important° At lower temperatures the URCA process

competes with the bremsstrahlung process but the plasma process

becomes unimportant. At sufficiently low temperatures the

bremsstrahlung process predominates over other neutrino

processes. The point where the bremsstrahlung rate begins

to exceed the URCA rates depends on the stellar mass. For

massive stars, this switching occurs at 3_Sx109°K, ' but for

low mass stars the switching temperature is _ 5 x 107OKo

Neutrino cooling of any kind becomes too small as compared

with the photon cooling when the temperature becomes lower

than about l_4x 108°K. Hence, the brsms_rahlung process

never becomes important in sufficiently low mass stars

(M _ 0o2M®)°



In the above luminosity calculations we assumed that all

neutrino processes not included here are unimportant in

neutron stars. Bahcall and Wolf (1965a,c) have raised the

question of neutrino cooling from pion decays in neutron star

interiors. Such pion decays can occur only if pions should

have a small effective mass in the presence of a largely

neutron gas. Both Bahcall and Ruderman, as well as others,

have indicated to us (private communication) their expectation

that, under the conditions in which pions may be present in

a neutron star, there will be a predominantly repulsive

interaction between the pions and the neutrons. This would

raise, rather than lower, the effective mass of the pions,

and make it very unlikely that pions will be present in the

interiors of neutron stars.

COOLING TIMES

The cooling time 7 is computed from the various theore-

tical data of the last sections and from the following

relation:

U 2

(26) 7 = - L (U---_--

U1



where U is the total energy content of a star and L(U) is

the total luminosity, Lph ÷ Z Lu, expressed as a function of

Uo If the above integration is carried out from the initial

energy U 1 to the final energy U 2, T gives the time interval

during which the star has cooled from a higher temperature T 1

where the total energy is U 1 to a lower temperature T 2 where

the total energy is U2o The moment at which a supernova

explodes has been defined as the starting point for counting

the age of a neutron star.

The results are tabulated in Tables 5 through I0. An

important parameter which characterizes the cooling behaviour

is the ratio of the central temperature to the surface temp-

erature, a typical value of which is about I00 for a neutron

star. Hence we defined _ as the ratio of the central temp-

erature to the surface temperature in units of i00, and the

values of e for each model at different temperatures are

listed in the same tables° We see that this ratio is a

sensitive function of mass, temperature, composition and

nuclear potential. With increase in mass, e decreases° With

increase in temperature, _ increases. For the models of the

same mass, temperature and nuclear potential, the value of

for Fe models is somewhat larger than that for Mg models°



We see that the detailed behavior of cooling is different for

each different type of model and that this difference comes

mainly through the sensitive dependence of _ on the different

kind of model.

Figure 7 shows the cooling curves of our six models with

iron atmospheres (solid curves correspond to V type and
8

dashed curves to Vy type models)° The point at which the

neutrino cooling rate and the photon cooling rate become equal

is shown by a cross for each curve. The figure shows that for

the same nuclear potential, the neutron stars of lower mass

cool faster than those of larger mass up to an age of about

10 6 years, but after that the heavier neutron stars cool

somewhat faster.

The complicated effect of the nuclear potential is

observed when we compare the curves of the models of the

same temperature and mass but of different nuclear potential°

To see better the effects of different composition, cooling

curves for the same types of model of the same masses but of

different compositions are shown in Figure 8. Solid curves

represent models with iron atmospheres and dashed curves

those with Mg atmospheres. We see that in the region where

the neutrino cooling predominates over the photon cooling



the cooling rates of Fe models are somewhat faster than the

cooling rates of Mg models, but that the reverse situation

is noted in the region where the photon cooling is the main

cooling mechanism. This is easily explained if we note that

the neutrino cooling and the total energy content of the star

depend on the internal temperature while the photon cooling

is a function of the surface temperature and that the opacity

of Mg atmospheres is somewhat lower than the opacity of Fe

atmospheres°

> 10 7 o K
We see in these figures that the models with T e N

cool too fast for observation, while the strong absorption of

x-rays from a neutron star by interstellar gases makes it

very difficult for us to observe neutron stars with T < 10 60Ko
e

The star's luminosity itself is already low at T e _ 10 6 OK

(Table 2)° Hence the most important range of temperature of

neutron stars from the point of view of observation is

10 7 > T > 10 6 OK, and this portion of th@ Curves is enlarged
e

in Figure 9° A neutron star will be only about 1 day to I0

years old when T _ 10 7 OK depending on its mass value,
e

nuclear potential and surface composition, but it will take

about 2 x 10 3 to 3 x 10 5 years before it will cool down to

NI0 6 OK. We note that the effect of mass on cooling time is



the most drastic° The dependence of cooling on the different

possible kinds of nuclear potential and composition is by no

\

means negligible when we need detailed theoretical informa-

tion, but this uncertainty is relatively small as compared

with the mass effect. By comparing our present results with

the original calculations (Tsuruta 1964) where only the plasma

process was taken into account as theneutrino cooling

mechanism, we note that the faster rates of cooling by the

URCA process and the bremsstrahlung process cause some

important effects on the cooling behavior at higher tempera-

tures (Te _ 2x10 6 OK), but no significant change is observed

when T < 2x106 °K.
e

OBSERVATIONAL PROBLEMS

If a neutron star emits radiation as a black body,

the wavelength I giving the maximum intensity in the
max

°.

spectrum is given by

(27) imax (cm) = hc/(4.9651kT e) = 0.2918/T e (OK) .

This simple relation indicates that when T _ 106 to l07 OK
e

the maximum comes in the soft x-ray region, 30 > I > 3A,
max -_

while this maximum shifts to the ultraviolet region when T
e



55-_

falls to around 105 - 104 °Ko From Table 2 we see that a

> 106 OK has L > L is the lumino-
neutron star with T e ® (L®

sity of the sun), while L _ 10 -5 L to 10 -9 L when T _ 105
® ® e

to 104 °Ko Also it takes about 103 to 4x105 years before a

neutron star cools down to T _ 106 OK° That is, a neutron
e

star can last sufficiently long to allow our observation in

the x-ray regions even though it will be too faint to be seen

optically°

Until recently the observation of x-rays from outer

space has been prevented due to the fact that the earth's

atmosphere is strongly opaque to radiation in the x-ray

regions. However, interstellar gases are practically trans-

parent to x-rays of, say, _ < 30_ (the precise value of the

upper limit to the wavelength depends on the distance between

us and the x-ray emitter)° The above considerations lead us

to the conclusion that some of the neutron stars which are

sufficiently close to us and which are not surrounded by

x-ray emitting gas clouds should be observable as x-ray

sources.

Since it became possible to send x-ray detectors above

the earth's atmosphere, at least I0 galactic x-ray sources

have been discovered (Bowyer, Byram, Chubb and Friedman 1964a,



1964b, 1965, Giacconi, Gursky, Paolini and Rossi 1962, 1963,

Fisher and Meyerott 1964) o Two major sources which were

discovered first which are best known are Sco XR I, the

strongest x-ray source in the constellation Scorpio, and

Tau XR i, a somewhat weaker source near the center of the

Crab Nebula° We use the notation of Bowyer, Byram, Chubb

and Friedman (1965) to designate x-ray sources° A possible

association of the strongest Scorpius source and the North

Polar Spur, the nebular remains of a supernova explosion

which was supposed to have occurred about 50,000 to I00,000

years ago at a distance of about 30 parsecs away (Brown,

Davies and Hazzard 1960), has been suggested, but otherwise

there is no nebulosity or peculiar star in the vicinity of

Sco XR i. The Crab Nebula is believed to be the remnant of

a supernova explosion which occurred in I054 AD about Ii00

parsecs away from us. The angular size of the Sco XR 1 was

determined to be less than 7 minutes of arc (Oda, Clark,

Garmire, Wada, Ciacconi, Gursky and Waters 1965)7 while the

size of the x-ray source in the Crab Nebula was measured to

be about 1 light year in diameter through the lunar occulta-

tion experiment (Bowyer, Byram, Chubb and Friedman 1964b),

less than half the size of the optical nebula in the Crab,



while the optical nebula is about two to three times smaller

-7

than the radio size. The flux of Sco XR 1 is about i0 ergs/

2 ergs/cm 2cm -sec and that of the Tau XR 1 is about 10 -8 -sec.

The intensity of other sources is about the same as that of

the source in the Crab Nebula.

All of the x-ray sources, except the Scorpius source,

lie close to the galactic plane and within 90 ° of the galactic

center. This distribution resembles that of galactic novae.

From this and other evidence it has been suggested that the

probable origins of the x-ray sources are supernova outbursts

(Bowyer, Byram, Chubb and Friedman 1965, Burbidge, Gould and

Tucker 1965, Cameron 1965b,c, Morrison and Sartori 1965,

Oda L965, Hayakawa and Matsuoka 1964, Finzi 1965). Indeed

there is no evidence against this assumption. Many important

supernovas have not been identified with x-ray sources of

strength comparable with that of the Scorpius source or the

source in the Crab Nebula. This is easily explained if

we note that these supernovas are far more distant from

us than the Crab Nebula or the North Polar Spur. Most

of the discovered x-ray sources are not identified with

known radio or optical objects. This is also no contradiction

to the supernova hypothesis if we note the possibility

that some of the x-ray production mech-



anisms will have much longer lifetime than that of the

optical or radio emissions.

As mentioned already, we believe that a remnant of a

supernova explosion consists of a central condensed core in

the form of a neutron star and of surrounding hot gas clouds

in the form of expanding envelopes° How can we observe this

complex assembly of matter? As far as the central core of

neutrons is concerned there will be no hope of observation

except as the emitter of soft x-rays in the narrow range of

about 30 to 3_, because a hotter neutron star of T > 107 OK
e

(corresponding to x-rays of < 3_) will cool too fast (within

less than a day to i0 years) and a cooler neutron star of

T < 106 OK (corresponding to x-rays of > 30_) will be too
e

faint to be detected due to the strong interstellar absorption

and the faintness of the star itself. The situation is more

complicated in the expanding envelopes.

Due to the complex nature of a supernova remnant, the

observed x-rays can be due to non-thermal radiation from the

hot gas clouds, the thermal radiation from the neutron star,

or a mixture of both. The question of whether the thermal

component can be singled out from the non-thermal component

in the case both are present can be determined if the relative



..,.o J

strength of each component is known. In order to make some

sensible predictions of the possible nature of some of the

x-ray sources and their relation to neutron stars, we will

discuss Sco XR 1 and Tau XR I. The data on other sources are

still too scarce for this purpose. If we know the distance d

and the photon luminosity L of a neutron star, the flux F of

the thermal component of x-rays reaching the region just above

our atmosphere is found from

(28) F = L / (4_ d 2) .

If we accept the tentative association of the North Polar SpUr

and Sco XR i, the distance and the age of the neutron star

in Scorpius are known° Taking surface temperatures of 1 or

6

2x10 OK, consistent with the soft x-ray fluxes measured by

Friedman's group, the photon luminosity of the star can also

be predicted° The results for our six models are shown in

Table iio The age of the star T has been taken from our

results in the previous section (Figures 7-9) o If both the

North Polar Spur and the x-ray source in Scorpius are indeed

the remnants of a supernova explosion about 30 parsecs away

and about i04_5 years ago, the low mass models of M < 0.3M

should be excluded because they are too young. However, some



massive models are sufficiently old to support this hypothesis.

The flux of x-rays from a massive neutron star is also comparable

with the observed x-ray flux from the Scorpius source. The

result shown in Table ii gives rise to a possibility that the

observed x-rays from the Scorpius source may have a predictable

amount of thermai component, if it contains a massive neutron star of

about 1 _ 2M®. The spectral measurements of Sco XR 1 were

reported to be inconsistent with the picture of pure black-

body radiation. This may suggest that the nonthermal compo-

nent from the surrounding hot gas dominates over the thermal

component from the neutron star sufficiently to obscure the

black-body spectrum. However, because of the relatively

strong flux from the neutron star as calculated above, the

thermal component in this source may be identified, if the

remnant star is massive enough,and if longer wavelength detectors

can be used which are more sensitive to the peak of the thermal

spectrum.

Next, consider the source in the Crab Nebula. Here,

T -- 910 years and we get the present temperature and luminosity

from the results in the previous sections. The distance is

about Ii00 parsecs. From this information, the thermal

component of the x-ray flux from a neutron star in the Crab

Nebula can be obtained. The results are shown in Table 12,



for various models of different mass, nuclear potential and

surface composition. We see that, with the exception of the

particular model of V? type, Mg composition and about 2 solar

masses, the flux is less than about 1/4 of the observed x-ray

flux from Tau XR i. The large size of about one light year

already indicated that the major source of the x-rays from the

Crab Nebula is not thermal emission from a neutron star. The

theoretical calculation also supports this view. If a neutron

star exists in the x-ray source, it will not be identified

if the flux from the neutron star is too weak, as compared with

that from the surrounding region.

We are indebted to Mr. B. Sackaroff for assistance with

the opacity calculations which involved the use of some parts

of the Los Alamos opacity code in regions of temperature and

density for which the entire code does not work.
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TABLE CAPTIONS

Table i: Characteristics of our six chosen models. The models are

identified by the type of nuclear interaction V 8 or V and7

C

their approximate mass in solar mass units. Pm is the central

density in cgs units, M/M® is the mass in solar mass units, R is

the stellar radius in km, and PC is the central pressure in

relativistic units (PC = P(dynes/cm2) ).
• 10366 46x

Table 2: Photospheric propeZties of typical neutron stars

(V 8, 0.6M G) and (V , 2M®) at different surface temperatures T .Y e

Lph is the photon luminosity, Dph, Pph and _ph are the photospheric

O

density, pressure and opacity, respectively, and _ is the
max

maximum wavelength without red shift correction•

Table 3: Atmospheric temperature distribution of neutron star

models with M = IM® and R = i0 km. The temperature T at a

specified p, and the temperature Tb and density Pb where the

degeneracy starts are listed as a function of surface temperature

T -
e

Table 4: (Models with M = IM®, R = 10 km) Temperature and density

distribution near the surface at different depths (R-r) at

given surface temperature T . The point where EF/kT = 2.5e

indicates the thickness of the non-degenerate envelopes.



Table 5: The characteristics of the hot neutron star model (V , 2M®)
Y

with the Fe and Mg atmospheres. (T and T are the surface
e c

and core temperature, Lph is the TPh°t°n luminosity, EL_ is the
I \

10 -2
total neutrino luminosity, _ = ( _ ) U is the internal

r

e

energy and T is the cooling time.)

Table 6: The characteristics of the hot neutron star model

(V , I.IM®) with the Fe and Mg atmospheres. (The notation is
Y

that used in Table 5.)

Table 7: The characteristics of the hot neutron star model

(V , 0.2M®) with the Fe and Mg atmospheres. (The notation is
Y

that used in Table 5.)

Table 8: The characteristics of the hot neutron star model

(V B, 1.0M®) with Fe atmospheres. (The notation is that used

in Table 5.)

Table 9: The characteristics of the hot neutron star model

(V 8, 0.6M®) with Fe atmospheres. (The notation is that used

in Table 5.)

Table i0: The characteristics of the hot neutron star model

(V 8, 0.2MQ) with Fe atmospheres. (The notation is that used

in Table 5.)



Table ii: The observational problem of Sco XRI. (T is thee

surface temperature, L is the photon luminosity T is
ph

the age of the neutron star of the given temperature and

FLUX is the flux of the thermal component of the x-rays

from a neutron star in Sco XRI, 30 parsecs away to be

observed above the earth's atmosphere.)

Table 12: The observational problem of Tau XR1. (T is the
e

surface temperature of the neutron star of age 910 years,

Lph is the photon luminosity of the neutron star of the

given temperature, and FLUX is the flux of the thermal

component of x-rays from the neutron star.)



TABLE 1

Model (Notation)
c

D
m

(gm/cm 3) M/M
Q

R (km) PC

Vy, 0o2M®

V , IolM
Y ®

V 2M
Y' ®

V 8 , 0.2M@

VS, 0.6M®

V 8 ' IM G

2o33Xi014

6o89XI014

2.17Xi015

3,26XI014

3.55XI015

8o26Xi015

0.2003

1.074

io 953

0 o1996
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TABLE 3

SURFACE

TEMPERATURE

T (°K)
e

io 6 x 107

1o2 x 107

1 x 107

9.4 x 106

6.7 x 106

5.1 x 106

4.3 x 106

3 x 106

1 x 106

7.7 x 105

p =I 06gm/cm 3

9.08x108

6 o86xi08

INTERNAL TEMPERATURE T (OK)

i

p=109gm/cm 3! p =i012gm/cm 3

3.47xi09

2.34xi09

3 o65xi09

2 o425xi09

p=1014gm/cm 3

3.65xi09

2o425xi09

T b (OK)
i
i Pb

!

,i (gm/cm 3 )

I

!

1 o4x109 !4.3x106

7.7x108 1.5xl06

5o92XI08

5.75xi08

4.51xi08

3.79xi08

3.395xi08

2o64XI08

9.61xi07

6o5XI07

Io88Xi091.825xi09

1.68x109 ' 1o73X109

lol0xl09 i 1.125xi09
I

8o09X108 i 8.21x108

I

6o765xi08 i 6.83xi08
!

i

4o62xi08 ! 4o64XI08

1.12xlO 8 ! 1.125x108
I

7.18xlO 7 ! 7o35X108

1.88xi09

1.73xi09

1.125x109

8o21XI08

6.83xi08

4o64Xi08

1.125xi08

7.35xi08

5o92Xi_ Ixl06

4 o8xlO 8 15.4xlO 5

2 o6X108 !lo4x105
i

1.5xlO8i6.2xlO 4
I

1.03xl_!4.8x104

i

7.6xlO 7 i 4x104 •

3.5xi07i 104
!

2°3xlO714"2x103,
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FIGURE CAPTIONS

Figure i: The opacity in cm2/gm as a function of density in

gm/cm 3, at different temperatures, calculated by the use

of Cox's opacity code and an ionization code. Solid curves

are for iron and dashed curves are for magnesium.

Figure 2: Central temperature as a function of surface tempera-

ture for models of nuclear potential V with different mass
7

values. Solid curves are for iron and dashed curves are

for magnesium.

Figure 3: Temperature distribution near the surface of a neutron

star. The temperature is plotted against the distance from

the photosphere in meters for a model of one solar mass,

i0 km radius, and with various different values of the

surface temperature T . The borders between the degenerate
e

layers and non-degenerate layers are shown by crosses.

Figure 4: Density distribution near the surface of a neutron star.

The density is plotted against the distance from the photo-

sphere in cm for a model of one solar mass, i0 km, and

with various different values of the surface temperature.

Figure 5: Energy loss rates due to neutrino pair emission from

plasma in erg/cm3-sec shown as a function of electron number



-3
density in cm at different temperatures.

Figure 6: Neutrino and photon luminosities and total internal

energy of a neutron star model of i.i solar mass and of the

V type nuclear potential are shown as functions of the
Y

core temperature of the star. The neutrino luminosity L

due to the plasma process, the URCA process and the

bremsstrahlung process are shown separately. The photon

luminosity for the Mg atmosphere and the Fe atmosphere are also

shown separately.

Figure 7: Cooling curves for the six typical neutron star models

with iron atmospheres. Surface temperatures are plotted

as functions of time in years. Solid curves represent the

models with the V 8 type nuclear potential and the dashed

curves represent the models with the V type potential.
Y

Different models are identified by their mass values and

the type of the potential. The points where the major

cooling mechanism shifts from the neutrino emission to the

photon emission are indicated by the crosses.

Figure 8: The effect of composition on cooling curves. Surface

temperatures of models of the V type potential and with
Y

different mass values are plotted as functions of time in

years for iron atmospheres (solid curves) and magnesium



atmospheres (dashed curves).

Figure 9: Cooling curves for models with iron atmospheres in

the most interesting region for observation are shown in

detai 1.
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Possible Magnetospheric Phenomena

associated with Neutron Stars

WITH the discovery of' X-ray sources in the sky x,_,

speculation has arisen that they might bc assoe.iat, ed with

lloutron or hyl)cron stars formed during the internal

collaimo which triggtu's off supernova _xplosions (probably
of type I). l'ate,s of cooling of n(,utro, star models have

bq:cn calculated by Morton 3, (_hiu and .Salpeter_. o, "rod

Tsui'uta% It app,_ars (J. Bahcall, personal eornmunica-

tion) th'_t tit(, importance of the early cooling by cnfission
of neutrinos from the 'Urea' l)roe_ss has boon un(lor-

cstinmtt_l in the foregoing investigations. With rough
allowance tor this c,fli_ct, the calculations of Miss Tsuruta

indicate that a neutrou star will rapidly cool to 3 or 4 x

l06 °K, but that. after l05 years its surface temperature
will still be about 2 x l0 _' °K.

I)uring the earlier part of 1964 evidence unfavourable

to t,ho n(mtron star hypothesis for X-ray sources accumu-

lated. Tiros Bowyor, Byram, Chubb and Friodmah 7
showo, l from a hmar occultation measurement that the

diameter of the X-ray source associated with the Crab

Nohula is _0)out one light year, and there appeared to be

a. doticiency of soft X-rays from it. At the symposium on

"'Noul ton Stars and Celestial X-ray Sonrcos", hold at the

God(lard Institute for Space Studios during March 1964,

('iaeconi and Friedman both rol)ort(xl crude spectral

(,st, inaates which suggested that the strongest X-ray

sourx_;, in Scorpius, if' thermal, would have a temperature

.f about I or 2 × l07 °K--much too hot to be interpreted
as a n(mtron star.

m_tny ilioro ntcilsUrOlllOllts wcro reported at the second

"l'oxa.s Conference on ]_.elativistie Astrophysics in Decem-

ber 1964. Fri(_lntan, for example, rel)ortod that the soft

X-ray flux from both the Crab Nebula and the Scorpius

source has boort greatly underestimated; his newer

determination of the equivalent thermal temperature of

the Scorpius source was 2 x l(Y' °K. He also reported

that ton X-ray sources had now hoe, i(lor_tifiod and thai.
t he, so formr_l a distribution flatteno(1 toward the galactic

plane. Also at the l)eeombor 1964 Texas Confi,ronc,

Giaeconi reported that the angular diameter of the

Scorpius source is loss thrill 8 min of arc. However, Clark,

at the same Conference, rcl)ortod that t.ho Crab Nebula

(.tuittod a significant flux of _3(I koV X-rays, eonsistont

with tbc synchrotron emission pi(.tur(_ of Woltjor ".

Fisher, again at the second Texas Contbrenco, reportexl

that th,, X-r,ty energy speetrmn from the Seorl)ius soure[,

contained t.,m largo a flux of higlwr energy X-rays in t)_.

vonuislpnt with a ptua_ thorn|al spvclrum of 2 x Ill _ _1_.

It is the l)urposo of the present communication to
._uRgost lhai the discrete X-ray s(mrces may be J outron

slar_ wiih an associated magnetosphere. Th0 X-ray
s[_,t.tn,m would thus consist of a thermal component

omitted from the photosphern and a non-thermal syn-

ehrol ron contponont omitio(1 by t rapped electrons aceolor-

attul in th_ nlltgn[:tosl)boro.

•Ma_n[_tic ti_lds are commonly associated with stars.

_Voltjcr _ has pointed out that neutron stars may contain

resEnt.clio fi_d(ts with str.ngths up to _ 10 t_ gauss, which

would be formed during the compression of matter which
forms lho neutron star. This compression occurs during

the hydrodynanfie collapse of a pro-supernova star.
Colgate al,.(l 9,rhit_ _ hav(, found that a degenerate neutron

core staris to build up in such a collapse, and additional
matter descending on this core releases largo amounts of

gravitational potential energy. The deposition of this

energy forms a strong shock wave which ejects the outer

layers of the sttrr. We must expect that the internal

magn,,tic lines of force would be drawn radially outward

]n this explosion. However, the rotation of the remaining
neutron star would twist the lines of force in the inner

region so that they would have to r_-connoct to form a

self-contained magnetosphorc.

The snrfaco temperature of a neutron star is comparable

with the kinotid temperature in the _olar corona, but its

radius is orders of nmgnitudt_ less than that of the Sun.
Hence the stellar wind associated wilh a, mmtron star

will be negligibly small compared with the solar wind.

according to the hydrodynamic mod(,l for coronal expan-

sion z°, unless much higher kinetic tc, tnl)(q-at.t_r(_s are pro-
ducod in a corona _round the neutron star. It should not

be ruled out that the mcx:ha.nism to t,e discussed her_,

might produce these higher l¢inotic temperatures, in

which case thorn couhl also be a bron_sst rahlung component

in the X-ray emission. The heating of the solar corona

appears to be produced by generation of acoustic, gravity

and hydromagnotic waves by tm'l)ulonco in the convoctiw,

layers holow the solar l-)hotosphoro. It is clear thqt no
similar convective region can exist in a neutron star%

However, the neutron star is eapatdo of storing gravita-

tional potential energy in the tbrm of radial oscillations.

Such oscillations will have a period in thn millisecond

range (F. J. l)yson, persoual communication). The

shock wave which o.joct s matter in the supernova explosion

will eject only the outer layers; the inner layers will be
accelerated outward by the shock but will fall back on

to the neutron star. It. seems likely that a substantial

amount of encrgy may thus I)o stored in the resulting

radial oscillations. The gravitational binding energy of a
neutron star is a s(u_sitive function of the mass% but it

may typically amount to several per cent of the root mass

ennrgy. Hence it may be possible to store _ 10 _* ergs a_

vibrational energy in such a star. This is 5 or 6 orders of
magnitude greater than the thermal energy content of a

neutron star at the end of the initial rapid neutrino

cooling stage s.

The radial oscillations will generate hydromagnotic

waves at parts of the magnolic field which emerge from

tit(; p|iotosphore at some angln to the normal. Then(,

w_tvos will traverse the magnetosphere and can accnlorat,

(dectrons. If this picture hohls for the Crab Nebula, then

ovi(hmtly thn electrons osc_rpe frnrn the magnetosphere

into the radial magnetic field system of the surrounding

expanding envelope. The electrons will initially omit

X-rays by thn synchrotrou process, but their synchro-

tron lift*time for X-ray omission is only about one year s.

This wouhl account for the observation that the region

of X-n_y omission in the Crab Nebula is smaller than the

region of optical synchrotron emission.
If the.so considerations are correct, it is evident that

many other non-thermal phnnomona will be associated

with the mechanical nnorgy of vibration of ncutron stars,

and hence that extensive theoretical investigations of

such phenomena may be rewarding.
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Oscillation Periods of Neutron Stars

'£HE x_x_ont dim_vo1_ "_-_ of colestialX-ray sources
prompted various authors s-ll to propose possible produc-
tion mecha_ms of these X-rays. In an earlier com-
munication, ono of us" suggestod that some of tho X-ray
omission might be amociatod with the meclmnical energy
of radial oscillations of neutron stars. To investigate
such a possibility, precise knowledge of the oscillation
periods is important. The investigation of the possible
effect of nuclear forces oil such p_riods is interesting in
itself. This communication presents some results of such
work.

It is well known that general re.lativit.y is important in
such condensed bodies as neutron stars. Therefore, the
circular frequency for pur_dy radial oscillations ill general
relativity, as given by Chandrasokhar"-" (the final cor-
rected expression), was used in our calculations. Thrce
types of nuclear forces were chosen for use in the equation
of state. One, designat_l 'Skyrmo', is a three-body
nuclear potentiul". The other two are nontron-noutron
potentials dcriv(_l by Lovingor and Simmons _7, and are
designated V D and Vy potentials. The case of non-inter-
acting formions was also considered for comparison. The
models with zero interactions are designated 'ideal' gas
models, and the others with the thrc_, types of nuclear
forces are called the 'Skyrm,', V# and l" e t_l_e models,
respectively. The properties of those models are more
fully described in a thesis", and will bc published in duo
COIiI'8¢.

The periods for the four kinds of models arc shown as
a function of the stellar gravitational mass in Fig. l ; the

periods are expressed in milliseconds and the nmsses are
expressed in solar raa_ units. The broad horizontal
portion of each curve corresponds to a series of stable
neutron star models. The 'Skyrmo'-typo stars have periods
of 0-2-0.3 msoc and the V v type stars have periods of
(I-4-0-5 m_soc in the stable region. The typical periods 0Y
the V# type models are about 0.3 nmec when the stars are

m_ive, but for less-massive models the periods are about
! n_sec. The periods for ideal gas models vary rapidly
with mass, decreasing with increasing maqs to about
(;.8 msec. Estimates of oscillation periods that can be

I-3

i

_1"0

0-5

_SavRu[

0 -------------_--J_ J .--.L_

0"5 1-0 1-5 2"0 2-5

(nelsx masses)

Fig. 1. Periods of radial vacillation for neutron star_ corresponding to
four equations of state. The branchesmarked(1)_epresent eqnatimasof
state limit_, so that the ]_mure doesnot exceed one third of the proper
enerlD"density; branchesmarked (2) arelimited so that the pt_sure does

not exceed the properenergy density

obtained from the classical equations (order of nmec) _'
are especially good for the ideal gas models. However,
our present results show that we must resort to calcula-
tions of the exact general relativistic expressions to obtain
more detailed quantitative information.

In a suitable equation of state the pressure is not allowed
to increase without limit as the density increases, so that
either the restriction p <_ ¢/3 or p _< t must be imposed.
The periods wore calculated for both reetrictions on the
equations of state and are shown in Fig. 1. The curves
denoted by (1) represent the models with the limit p _< ¢/3
and those by (2) with p _< ¢. The difference is negligible
over tim major portion of the stable region because these
restrictions become applicable only near the massive end
of the stability region for somo of the equations of state
used.

The square of frequency {as is positive in a stable
region, becomes zero at the point of instability, and is
negative in the region of instability "_'s. The period
approaches infinity at the boundaries of the stable region
(one or both ends of the curves in Fig. 1). The curve of
the "Skyrmo'-typo models with p _< ¢/3, however, fails to
show this singularity at the massive end. Instead of
going to infinity (that is, (a _ = 0), the period approaches
a firfito value, as infinite central density is approached,
after a number of damped oscillations. For this particular
model, instability never sets in at the high-density limit.
All other models chosen for this investigation, however,
show a singularity at the point of the major mass max-
imnm.

The behaviour on the low-ma_ side is more com-

plicated. In order to obtain more quantitative informa-
tion in this region we must include electrons in our
configuration. All present models have a pure noutroil
configuration. Therefore, all curves in Fig. 1 arc, termin-
ated near 0-2 solar masses.

In order to single out the effect of nuclear forces on the
periods, the following period normalization may be used.
The normalization factor, _, is defined as:

Ta = 2_/o_.,
where:

10
_1 = AO._R '[3F-4-3OMc-IR-I(_ 1"-1)]. (1)

The formula for 6). _ is the expression ohtained for a
homogenous fluid sphere with a constant F and constant
energy density, if one expands the formula s for ¢oz,
subject to the condition 2GM/cSR< 1. The third term

in the expression is therefore the general relativistic effect
(this expression is quite general and may he used for any
range of mass), and the general relativistic effect on the
periods is accounted for in this way. The factor A is a
correction which accounts for the departure from homo-
geneity, and ]["is the ratio of specific heats.

In Fig. 2, the normalized periods, x/¢, (with F = 5/3
and A = 1), am plotted versus stellar mass. We note
that the effects of nuclear forees are shown more clearly
in this figure. Near ordinary nuclear densities the
'Skyrme'-type potential has the largest attractive term,
which decreases the pressure at a given density, the Vy

type has an attractive term of intermediate magnitude,
and tim V# type has the least attractive term. One con-
clusion to he drawn from Fig. 2 is that an attractive
force tends to decrease the oscillation periods.

The _ons presented here are intended only to
illustrate the importance of nuclear interaction corrections
to the equation of state. It seems likely that neutron star
vibration periods will he lees than would be calculated
for a gas of non-interacting particles. If thermal emission
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Fig. 2. Periods of radial oscillation of neutron stars with four equations
of state relative to the normalization factor r. defined in equation 1. The

branches marked (1) and (2) are as defined for Fill. 1

in the soft X-ray region should be detected from such
objects, then it will boconm desirable to attempt to
detect and mo_suro vibration periods. With some
additional indication of the mass or raditm of such

objects, these periods will then give i:tformation about
the nuclear forces i,, the interiors of neutron stars.
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Table _I

Neutron Star, Models

Potential

i

v_

vp_

V
,y

g
7

V
7

M/Mo R(km) Oc( /om3)

0.34 5.7 8.7 x lO14

0.62 7.0 5.8 x 1015

0.89 11.7 6.2 x. 1015

0.33 11.2 3.3 x lO 14

1.07 12.3 6.9 x 1014

1.80 14.1 1.4 x i015

2. Vibrating Neutron Stars

,o( /om 3) o

9.2 x 1014 4.0

4.0 x 1015 6.0

7.1 x 1015 9.2

3.4 x 1014 3.0

7.4 x 1014' 6.0

1.6 x 1015 10.0

As pointed out previously, there exist a whole catalogue of

statically stable neutron star configurations, not all of which

are stable against radial oscillations. Chandrasekhar (1964a,b,m)

has derived the necessary criteria for establishing whether a

spherically symmetric configuration is dynamically stable based

on an analysis of its normal modes of radial oscillation.* For

this purpose he defines the Lagrangian tr;IA function

¢(r,t). to(r)ei't

where _(r,t) measures the radial displacement of a particle from

its equilibrium position. Given _o(r) the eigenfrequencies w are

found from a oomp!e_ of expressions involving the properties of

the static configuration and _o(r). Th? _o(r ) which minimizes w2

_ ,
I

See also M_sner and Zapolsky (1964). Wheeler et ai.(1965) have

derived Chandraeekharls results using a different approach.



describes the fundamental mode of oscillation. A sufficient

condition for the occurrence of instability is that w2 be

negative, i.e. _(r,t) will contain an exponentially increasing

or decreasing factor. We shall consider the fundamental mode

only, with the warning that stare that are stable in that mode

need not be stable in higher modes.

Teuruta, st al. (1966) and Miener and Zapoleky (1964) have

found that these considerations clarify the structure of the

curve of mass versus central density of Figure Restricting

ourselves to the major peaks around 9c _ 1015 gm/cm3 and 1016 gm/cm 3,

stars which are stable against radial oscillations in the

fundamental mode are to be found only on the low density side of

2
the peaks. As soon as the critical mass is reached, _ goes to

zero and then turns negative for higher densities. This behavior

is shown in Figure in

which oscillation periods P for V_ and V 7 models are plotted
|

against mass.* Note that as the critical mass is.approached the

period increases suddenly implying that w - 2w/P tends to zero.

Similarly as the mass decreases towards the trough of 9o versus

M (9c _ 1014-1015 gm/cm 3) the same effect occurs.

The form of the trial function yielding the lowest eigenmode

for stars of mass less than critical is**

,m , , ,

The numerals (I) and _2) refer to limitations on the equation of
state: (1) for p < zc_/3 and (2) for p < ¢c . For V_ and Va

potentials (I) or--(2) make little difference in P ex6ept near

the critical mass.

A. G. W. Cameron informs me that preliminary calculations of _c_

at Columbia University indicate that actual dynamic models of

oscillating neutron stars do not show as simple a displacement form
as this one but that the vibrational structure is much more

complicated. However, the calculations of Meltzer and Thorns (to

be published) agree with Tsuruta's.
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o(r) __ r_- constant
o

where 6r is the radial displacement of a particle from its equi-

iwt
librium position r o. Hence, 6r(ro,t ) = royce , where _o is

a constant. The star executes a simple "breathing" motion with

every particle moving in phase and beingdisplaced by an amount

proportional to its equilibrium radius.

This behavior allows a very simple computation of the total

vibrational energy of the object. Since all particles pass through

their equilibrium positions at the same time, then the total

vibrational energy (excluding general relativistlo effects) is

Just the kinetic energy summed over all particle s at that time.

That is,

_IB "f R_I pv2 4Xro 2 dro

o

2
•here v is the velocity of a mass element 4XroPdr o. The particle's

I

• _oeiWtposition, as a function of time, is r - (I + )r O so that

v2 .2 2 2 Hence,
s _0 w ro .

_IB _ 2x_2 _o pr4dr • _m_$L,)

o

The approximate sign of _) is stressed since vibratlonal

¢haraoteristios of the star are sensitive funotlons of the properties

of its outer portions. These properties are not aoourately known.

This equation also neglects higher vibrational modes which tend

to increase EVIB.



Based on the density distributions kindly furnished by Miss

-- Q

Tsuruta_-_: .....=_ T, ........ _ and new calculations of vibrational

periods of these models, I have computed EyIB/_ for all models

studied. Values are listed in Table4_.2 along with the

frequencies. These models have been chosen such that none lie

so near the critical mass that low frequencies limit the amount
t

of energy that they can store.

Table _2

Vibrational Models

2 f(ergs/T )Model (mass) u(radians/sec) EViB/_o(,rg. )

Vp (0.54) 1.0 x 104 9.6 x 1051" 4.2 x 1047

V_ (0.62) 1.96 x 104 3.3 x 1052 2.5 x 1047

V_ (0.89) 2.09 x 10 4 4.4 x 1052 2.1 x 1047

V (0.53) 1.25 x 104 2.5 x 1052 5.9 x 1047
7

v (I.07) 1.67 x lO 4 1.7 x lO 55 1.05 x lO48
7

V (1.80) 1.25 x 104 1.4 x 1055 i.I x 1048
7

In order to compute the thermal energy of the star we use

the results given in Appendix I for the total energy of a degenerate

Fermi gas. The kinetic energy (total energy minus rest mass energy)

iR

E (kin.rio)'_ xm4°5 k(x) [1 + _ (Sx2+l)(x2+l)l/'2"(2x2+l)]
5h"--T- p= '

where



• 1

3h3_ 1/3 me2
_8_=4Q ]j( _ , p l kll_

and k(x) is some function of x. The first term in brackets is

the kinetic energy for a zero temperature gas. The second,term

is the contribution from temperature. Hence, the thermal energy

is

ETa= _ x3 =2o(k_)2 (3•2+1)(•2+l)l/2.(2•2+l)
h3 • ' "

For a neutron medium at neutron star densities this yields

2
ETa--_ 2.5 • 1024 T9 p-2/3 ergs/81.

Since a neutron star is essentially isothermal over most of its

volume, the total thermal energy is

2 _R pl/Sr2drETH-- 3 • 1025 T9 . ergs.

o

• lth a in 0 = l" _ and p in _n/om 3.
f

&8

For a given model this is written

Era (79) =f _

• ith f listed in Table_2 for all modelS.

C. Neutrino Losses from,_eutron S_ars

Some of the ways in which neutron stars can lose energy by

neutrino emission are discussed in _" The important



processes,are plasmon decay and neutrino bremsstrahlungo Except

for comparison with mechanisms still to be derived, these will be
i

discussed no further.

1. The Modified URCA Process

Under,conditions of thermodynamic equilibrium theoompoeition

of neutron star 0interi°re is made up primarily of neutrons,

protons, electrons and, if the density is high enough, heavy

baryons. This is illustrated in Figure t3 of _.. " _ for

temperatures in the range_ 0 _,T 9 _ 10. The conditions that the

chemical potentials of the constituents must satisfy for equilibrium

are derived in Section E of that _ These conditions

impose strict limitations on what neutrino producing reactions

can take plao9 in She medium. We firs_ consider reaotinns involving

neutrons, protons and electrons.

For equilibrium,

_n " Mp + Me

• here the M's are t_e chemical potentials for neutron, proton: and
t

electron in that order. For densities greater than -- 2 x 1014 gin/ore 3

and temperatures less than T9 _ 10 these particles are deg?nerate

80 that one can sensibly talk about the Fermi energy EF - _-mo 2.

In these terms, the probability of finding an unoccupied state

at or below the Fermi energy is -- exp - EF/kT . For protons in

equilibrium mixture at p _ 3 x 1014' gm/cm 3 and T9 --_ 1, this

c_or ls-. 10 _ (see Figure _4_. The same factor for neutrons
1

:r electrons under the same conditions is considerably less.

•_-.erefore any reaction that requires one of these particles to



be formed in a final state with an energy less than its Fermi

energy will be strongly inhibited.

As an example, consider the electron decay of the neutron.

In order that the decay take place with any rapidity, the momenta

of all particles except the antineutrino must lie nea_ •their

Fermi momenta PF" If this is the case the antineutrino energy

is of the order kT which is the approximate allowable spread, of

particle energies around their Fermi levels. Momentum is not

conserved for these conditions since

AP - PF(n) - PF(p) - PF(e) >_ kTlo .

For example, when p _ 4 x 1014 gm/cm 3, T 9 - I, kT _ 0.I MeV we

have PF(n) ~ 400 MeV/c, PF(n) ~ PF(e) ~ 70 MeV/c, or

AP _ 250 M_ o which is much larger than kT/o. Hence, if the

decay is to conserve both momentum and energy, exit particles

must be produced with momenta less thanltheir Fermi momenta and

the rates for these decays are strongly inhlbited, w

These considerations led Chiu and Salpeter (1964) to suggest

what they ca_l the "modified URCA" process in which two neutrons

collide at.the top of the neutron Fermi sea and one of them

decays into a proton, electron and antineut_ino. The momenta

of the initial neutrons can be so arranged" as to conserve both

energy and momentum and still have the proton and electron moment_a

be near their respective Fermi momenta. Consider, then,

(n,n) _ (n,p,e,_) ,



snd its inverse
!

(n,p,e)-. (n,n,_) .

Even though these reactions involve six particles interacting

strongly and weakly, they are very rapid under the conditions of

thermodynamic or near thermodynamic equilibrium a_ very high
7

densities. Before computing the neutrino loss rates for (_a

and b) we first consider a medium at zero temperature which is

undergoing rapid fluctuations in density.
&

If the equilibrium condition (_) is satisfied at zero
7

temperature, reactions (_£ andS) can take place but only

sere energy neutrinos can be emitted. Suppose, though, the

density of the equilibrium, mixture is changed so puddenly that

the composition remains unaltered. Is the relation (

1

changed? In order_ to answer this we consider the special case of
+J

the oscillating neutron star in which all particles experience

displaoements of the form

6r - r ° _o sin wt

where r o i8 the equilibrium radial position and _o is a constant

small compared to unity. If the equilibrium density at r ° is Pc

then p varies as

Pl" PO(I +_0 + sin wt) "3 = Po(l .. 3_ 0 sin wt) .

$imi_arl_ each of the number densities varies aa

"i = "io (1 - 3_o sln .t) _ 6t+)



Where i l_bels the particle. For degenerate conditions the number

density of a Fermi gas is related to the chemical potential by

Ni - ai(_ i - a

where ai is a constant. The change in number density is then

2 4 1/2
AN i =- 3Nio_ ° sin wt = 3ai(_: - mio :). ._iA_i

where AUi is the corresponding change in 9i" In order to measure

the deviation of _n-_p-Pe from zero we define

6 - ],=n-Up-%[ - I.no+a.n-_po-a==p-_eo-a%l

- I •

The last step follows from the equality _no " _po+_eo at

equilibrium. With a little algebra this becomes

.... __. _eo'me °6- _olsin "tl _o._e 4 2 2_4 2 2_4
-- Pno Mpo ' _eo

For EF0(n ) << mn02 EFO 02•_ , (p) <<mp , and EFO(e ) = _eo we have,*

6= ¢olsin=tl 12 .F(=! - 2 F(p)- RF(e)I •

@

Finzi (1966) has given %his expression for 6 but includes a

spurious factor of three (K. Thorne, private communication). As
will be pointed out later this error introduces an incorrect
factor of 38 in Finzi's neutrino loss rate. He has used _is
results to try to show that the vibrational energy can account

for the distinctive shape of supernova light curves. This error
invalidates his argument. In any case, Morrison and Sartori
(1966) have probably found the correct meohanis m for the light
ourve.



_fo_

At a density of p ~ 4 x IOZ4 S=/o=3, Ev(n) -- Sv(e) --"7_ =eV.,

and EF(P),. = 3 MeV., so that 6 -- 60 _olSin cot I MeV.

Since 6 is not identically zero, thermodynamic equilibriu m

no longer exists and the modified URCA process can take place.

The rate of the reaction (for reasonable values of _o ) will be,

shown not to be so fast as to violate the restriction that the

composition cannot change markedly over many oscillation cycles.

The "thermal" URCA process is derived from the smearing of

Fermi levels by temperature effect. The "oscillating" URCA

process is caused by shifting of the Fermi levels.

2. Calculation of the Rates

A number of authors* have calculated either thermal or

oscillating URCA rates, but not both. Before discussing their

results we shall compute a combined thermal and oscillating rate
I

in a rather simple fashion. This _is improved by taking into

account the more sophisticated results of the above authors.

For the reaction (n,n) _ (n,p,e,_) we consider the simplest

Feynman diagram describing the scattering of two neutrons mediated

by a single z° =eson, followed by an electron decay of a virtual

neutron. (We shall ignore exchange diagrams or diagrams containing

charged mesons.) The four-momenta s3own in the figure label the

Chiu and Salpeter (1964), Finzi (1965), Ellis (1965) and Bahcall
and Wolf (1965 a,b an& o) for thermal losses, and Finzi (1966)_
and Thorns (to be published) for osoillating, URCA losses.



partiolem &s followss -

k2

Pl' P].7: P2

k 1 _ e"

incident neutrino (£.e,,exitantineutrino)

neutrons.

pt _ proton
" 2!_

O

The Ferment.... rules_L._e_._.forthe weak vertex, associated 7-matrices

etc., are reviewed in _. For each strong vertex we
v ")

insert a fa0tor g175 for the pseudosoalar meson where g is the

strong coupling constant g2/4x = 14. The virtual meson line

contributes a propagator t/(q2-m:) and the virtualneutron

contributes (7_p+m)/(p2-m2). The matrix element is

u- _(kl)7"Cl,'7_)uCk2)_'CP-')'r-(l'75).z .,. _2 2
p -m

q -m
X

The neutron and proton masses are taken equal to m, G is the weak

coupling constant and the uVe are appr0Pri&te wave functions.

Using the methods of__a_for summing final spins and

averaging initial spins we find

ll2,. _ " 1 I

• c,'-.')'

+ P_'¢Pz'P2)"2"(PI'Pn)]P_,kl(m2-pz'P2)_,



whore

" Pl " P_' P " q ÷ P_ " Pl " P_ ÷ Pl "
The electron mass is set to zero.

The neutrino loss rate per,incident neutron pair with

momenta Pl' P_ is
I

x (I -S(p2))CI-SCp_))(I-S(kl))(2x)4 64(p2÷kl+k2+P i

- pl-p_) d3kld3k2d3p_d3P 2 .

The factors (i-S) aooount for the unoooupied portion8 of phase

spaoe into which the exit particle8 may enter with S being the

Fsrni-Dirao distribution funotion

s - [i + exp _(s-_)2"I

and

The total lo88.rate L is

of Ini%ial neutrons so that

_- I/kT .

the integral over the distribution8

(2x)6

This yields an 18 dimensional integTal. However, the

kinematics of the reaction allow for considerable simplification,

Bahoall and Wolf (1964 b and o_ have pointed out that dogsnerao_



effects permit only very restricted portions of Base space to

contribute to the inte_al. If both initial and final neutrons

are located near the fop'of the neutron Fermi sea, the vector momen-

ta of these particles must form a rough equilateral triangle as

sho_ below.

Befgre. After
).

The vectors PT and _ are given by

PT " Pl + " P2 + " + p + 1 + 2

The length of PS is much smaller than P2 or PT and can vary only

in an extremeiy small region because P2 and PT are nearly equal

and oolinear. Vector, configurations which do not conform to the
t'

above diagram involve either initial particles that come from

sparsely inhabited regions of phase space or exit particles that
s

must enter densely . inhabited regions. Little leeway is allows4.

Therefore M2. can be evaluated for the above configuration and

removed from the integral. To do this,=_ conveniently,, . we define

M'2 and P by

=4==
Mo2 . .... e v

and t



p - _°_% S(pl)SlP_)(l-S(P=))(1-S(P_))(z-S(kI))%

64(P2+kl+k2+P:_'Pl-P_) d_Pld_P2d_p_.d_p_d3kld_k _ _ Cl'_

with

L I Ml2p .

From the numerical values of the Fermi momenta and energies

of partioles at thermodynamio equilibrium and the veotor

eonfi_ur&tion.it oan be shown that.,

-.e 1=o ° 2

PI'P2 " E1E2 - Pl'P2 = #n

.p, __ 2
Pl, 1 Pn

PJ'k2 = %Pn

p2.. ,2 ,., 2[m2.p2n] ,.,, . 4EF(n):m

0-2" =z-2~.:4_'(n) = .

The second term in braokets of M2 is small oomp&red to the

first, Henoe_.we find that

M,2 ,,, ]_ g4G2 1 1

"2_ (2x') 14 m4 _.F2(n)

The phase spaoe inte6Tal P,.&e will be shownRte given by



p ~ _ (k_)8.4 pF(p)p_(.)i

where I is a function of the ratio of 6 of (II-19) over kT. For

the special case of the thermal URCA rate (6 - 0), Bahoall and

Wolf (1965 b,o) give I _ 903. In those p_pers they also give the

following approximate expressions forequilibrium Fermi energies

and momenta for densities p _ 2pN (_N = nuclear density. Z

3.7 x io14 _/om_),

_(n) " s_,(e) ,, To (p/p_)2/_ xev

s_,(p) = 3 (p/ps)413 uev

PF(n)" 400(pi%)I13ueVlo

PF(e) " P_Cp)= 7o (pIp_)_'l_ "eric . . _,_-_)

Inserting these into L,-M'2P we find the thermal URCA rate,

8 erge/cm3.eeo%,,= 3x lo2° (pl_)2!3. T9

Bahoall and Wolf's result, based on an. entirely different method

of computation of the matrix element, is

•%,H¢B-,)= 5=lo19¢plp_)213T_.rgolom3-,.o

or only a factor of six lower than mine. Their matrix element

will be used here because it is based on nucleon-nucleon" scattering
k



data and the independent partible model of Gomes, etal. (1958)

which is more realistic than a simple single picn exchange model.

The method for computing the phase space integral will also

be taken from Bahoall and Wolf except for important modifications
I

which make it possible to compute the total URCA ra_e.

The integrand of P isnegligibls except in those regions of

phase sp_oe where all the particle momenta are within kT of their

Fermi energies. Therefore consider the "important" region where
• I

Ipsl ÷ Ipl-pl! < Ip21< Ipl*pll -l:psl e__) 07__)

and

Ipll > Ipsl.

The angular part of P is separated out by defining

A ,,_183(_ (final) - K (initial)) _i

where the product is over all particles and _ (final and initial)

are the vector directions of final and initial states. Bahoall

and Wolf show that

A- (4,)_ (2plp2p_)-l .

After doing the integration overthe nsutrinomomentum with .the

aid of the. last remaining delta function we define the new

variables

"l " _("l'"n)



_3

x3 " " _(_'2""n)

X4 =_ P(Ee.lXe)

x5 -- 13(_.p-_p)

and

A . _(_n.Pp..e ) . 6/kT .

Furthermore, we note that for protons and neutrons
!

and p2e dpe -- PF2(e) dPe over the "important" region.

putting everything together we have

pdp - EdE _m_IE,

Finally,

p= (._E)._. m4PF(P)PF2(e)_ ' dxI _ dx 2 _dx3 _dx4 _ dx 5

2P 8 .,_ .._ -(Xl+X2+X3+X4+a )

x,) • C,9)
i-I i-I

The limits are taken from .co to +co for all integrals except

x 5 (corresponding to the proton). This procedure allows a maximum

possible additive error in the integral of _- exp - EF(P)/kT

providing 6 _ EF(P ). Since kT << EF(P) for all oases

studied, the error is negligible.

The integral in _) was oalled I in (

to be

6 - 0 (A - O)Bahoall and,Wolf find

). For



iI.513 x8
I - 120_960' = 903 •

Thus, if we d0fine, ths ratio

I(A)
P'(A) - I(A-O) '

then the, general expression for the modified URCA loss rate is,
IO

usin_ (_),

8' P'(A) ergs/om3-eeoT(A,T9)"5•lOz9(plp, )2/3T9

for, the reaotion (n,n) " (n,p,e,_).

The integral P'(A) _l_^evaluated.|.. _ .... ___ _ _ "'

L

Fo_.A_ 160,

P,(A) = 1.65 x io"7 Ae .

Therefore, as kT tends to zero the temperature cancels in (_)

and the oscillating UROA rate is obtained,

LTIB(Tg-O,6) -0.74z 107 (pN/p)I/) a8 er_/8'm-eeo ,

.Q

vher6 6 - pn-_p-_e (in MeV.) kust _e 6Teater than ssro._ If

6 < 0 then Pn < Pp + Pe and no neutrons can decay°

The inverse reaction (n_p,e) _ (n,npv) can be shown to have

the same matrix element and phase space integral as the above

except that A is replaced by -A. Hence, the total loss rate is

i

t

Finzi (1966, with corrections) and Reltzer and Thorns (to be
published) have derived the zero temperature rates and their

results.are in good a_reoment with 441Jl__Z_ ? "



_¢A.,9) -5 = lo19 (p/pN)2/3 _EP'CA)+P'C-A)3ergs/cmLsec._me(.z_

Since P'(A) increases very rapidly as A increases there is little

error in replacing P'(-A) by 1/PI(A) and computing the absolute

value of A only. As either 6'or T9 approach sero the correct

limits are still obtained.

5. Other Reactions

Besides the neutron scattering reaction there are a number

of other possible neutrino producing mechanisms involving the

other constituents of the medium. The most important of these

occurs in the density _ 7 x 1014 to 4 x 101. 5 gm/om 3 where muons

,_- Ci_ • s".
make their appearance (see Figure _I_;_). Their presence implies

the existence of the reaction

(n,n) _ (n,p,.',v_)

and its inverse. The analysis of the rate follows that of the
t

analogous electron case. It is a simple matter to show that the

total rate Of (_J_) becomes

8
L(Ae,A,,,T 9) - 5 x 1019 (p/%,)2/3 % {p,CAe ) + I/P'CA )

+ [P,.(A ).+ 1/P,(Ai)] 2 2,;( ,)/P;( .)} .rgs/omL..c. _ L2_)

D

•heroFF(.) is the muon Fermi momentum and

%" I_n-"p'%l

A "lPn-_p-%l



Reactions involving antiparticles (including positrons)

go very slowly because at equilibrium their concentrations are
_ L ._e'--

negligible (see Section E, _),.

Bahcall and Wolf (19650) have considered the reaction

X" + n -- n + e" (or _') + _ ,

and its inverse. In that paper they find that the loss rate for

this reaction greatly exceeds that of the modified URCA process

based on their estimate of x" concentrations in the medium.

However, this view has since been discarded as Bahoall (and M. A.

Ruderman), in a communication to Tsuruta and Cameron (1966), no

longer believe pions are present except at very high densities.

This is consistent with the results of n which

pions do not appear until -- 1017 _a/om 3.

We shall also exclude reactions involving the heav_ baryons

for the following reasonss the magnitude phase space integrals

for reactions such as

or

Z" + Z'" n + e + _

should not be too different from the nucleon-nucleon interactions.

It is also expected that the strong couplings are about the same.*

This leaves the weak decay to be examined,

t

See for example, the A°-proton scattering cross sections given in

Alexander etal. (19_4) which'havethe same order 6f magnitude
as nucleon-nucleon.
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Following the analysis of Jackson (i n Fulton, 1963, P. 263 ff.)

we write the electron decay rate of a baryon in the form

X.gFM

where F is a laboratory phase space integral, M is the mass,of

the decaying baryon and g is an effective weak coupling constant

which measures the inherent strength of the decay. We want to

compare g for neutron decay with the g's for the decays of, the

mOSt abundant heavy baryons in the mixt,ure, i.e. A° and Z',

lO 6
/_o_, p + • + (_, 3.3 x seo -I)

and

-1'
Z'- n + e_+ _ (X=0.9 x I0 7 seo ) .

Using the expressions for F given by Jackson we find

g (n- p + • + _) = 5.4 x i0"10

{A°-.p+ e +_)=o.l
g (n- p + e + _)

and

s {z"- n + e + g) : 0.06 ,
g (n-. p + e + _)

with a average weak decay inhibition of _ 0.1. From these
f

figures we infer that the heavy baryon reactions are probably
, I

slower than the nucleonic--or at least that the inclusion of the

former dannot change the total rate by more than a factor of two.



This is certainly within the limits of error for the calculation

as a whole.

4_ Loss Rates During Vibration

Having established expressions for the URCA loss rates as

functions of A and temperature we compute their behavior for

sinusoidal radial variations in a neutron star.

T_e radial displacement of a particle during the vibration

is

6r - r?_ o sin wt

wi,th the dqnsity varying as

P " PC (i + _O sin ¢_t) -3 •

A rough estimate for 8 was given by (_) where for p N

4 x 1014 gm/om 3, 5 (max) = 60 [o MeV. In order that the expressions

for the URCA rates derived previously be valid 5 should be less

than EF(P). This sets an apprnximate upper limit of 0.05 on the"

value of _o that can be used., when p = 4 x 1014 gm/om 3. At higher

densities this restriction can be somewhat relaxed since EF(P)

increases rapidly with density. Similarly the highest temperature

that can be used is _ 1010 OK corresponding to the point at

which protons start to become non-degenerate.
IL

Equation (_) is not accurate enough ,to calculate 5 as

a function of p since L goes as 6 8. Therefore the degenerate

expression for _ versus p is used.

Figure _shows how L (excluding muons) varies over one

cycle of compression and expansion at a density of p - 4.6xi014 gm/o_ _
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and a temperat_e of T9 - 1. The period of the cycle is 0.8

milliseo, with an overly large amplitude of _o " 0.i which is

called x in the figure. Due to the large variation of L with

time, L is plotted logarithmically which makes the curve deceptive.

On a linear scale L is sharply ousped at the turning points of the

motion. The line labeled "equilibrium" is the loss rate for the

thermal URCA process only.

The disparity in the heights of L at the points of maximum
, ,

compression and expansion is due to the different percentage

i

change in p at these points. This means that there is a net

shift in composition to more protons. For the case shown the

mean life for a neutron against decay is 7 _ 103 seo. which is

a relatively short time. However, the value of _o is larger

than is used for actual calculation. A more reasonable value

of _o - 0.01 yields T _ 100 years. An investigation of the net

change in composition over times _ 1000 years indicate that the

number of neutrons converted to protons has little effect on the

outcome of the vibrational damping oaloulation._ If anything,

complete neglect of composition change tends to overestimate the

rate of damping.

The loss rate, integrated over as many cycles as take place

A_ ' J
in one second, is shown in Figure _as a function of density

for several values of _ (_x) and T9 equal to zero and unity.

The humped app,ara_nA nfi the _urTas is due to the relative changes

in the chemical potentials as the density veriest.

A convenient expression for the time integrated L derived

from numeric calculations is
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where

lc P'("o) + liP,C%) I:P,(A,)+I/P,CA_)]2 2- + PFC_,)/PF¢e),_(2_.)

with & and 6 computed at the maxinum point of compression. The
e

quantity Ae corresponds to Ac with everything computed at maximum

expansion.+ .The last tern

..q- 8(1 + P_(.)/P_(.)) .

5. Comparison With Other Rates

Table _J_3 gives,a short comparison of the modified _RCA

loss rate with the combined rates due to the meohanibms of pair
0

annihilation, plasmon decay and the_photoneutrino process.

(L ° is the combined rate.) Not included is neutrino brems-
\

strahlung which may be larger than the rest of the rates when the

temperature is below T9 -- 1 and if _o is much smaller than 0.01.

These rates are not dependent on the shifting of Fermi levels

due to density changes, butl for a given density, depend only

on i temperature.

_o = 0.01.

The temperature for the table is T 9 o 1 and

TabZe-il_3

C?nparison Of Rates

p (lt'm/ca3) L° (er_l_-seo) L (U'aCi)

" 1014 l.l x 103 5 x 105

1015 3.5 x 10 -2 2,5 x 107

10_ 6 lo2.X 10 -2 5 x 10 5

i



If _o is lees than 0.01 some of the competing rates may

become important but their neglect does not alter the conclusions

re&ohed._

D. Vibrational qnd Thermal Damping

The total modified URCA loss rate is obtained by integrating

23
(_) over the volume of the star, i.e.,

o

L(r, o, 9 )r2ar erg/seo. C_-/_

EVIB(_o,W); L7 and

amplitude and temperature it is difficult to see how this energy

lose decreases both EVI B and ETH. Initially we shall treat

vibrational and thermal losses separately by considering the

limits of zero temperature and zero amplitude.

1. Vibrational Damping

_IB(_o ) be the neutrino luminosity at zero temperature.Let

The rate of decrease of vibrational energy is then

d%i (t)
dt " "  IB( o)

2
Since EVI B is proportional to _o and _IB goes as

J

68 which in



8
turn goes approximately as _o (equation II-20) it is easy to show

that

 iB(t) E1+a  B(o)t3-I13.

The quantity a depends only on the partioular neutron star model

and is proportional to the loss rate. These results are very

snoou.raging. The oube root depsndenoe of EVI B on a appreoiably

reduoes the elf sot of any error in the luminosity oaloulations of

Seotion C. The luminosity is then

a Ev4 (t)
LVIB(t) = 3 arg.Iseo, C3 ]

by substitution of in (_) ÷
S-

Figure _shows the vibrational histories of all the models

studied. The initial value of _o is 0.05. We note that even

though vibrational energies decrease very rapidly with time, yet

after one thousand years have elapsed (3 x 1011 see.) there are

still more than 1047 ergs stored for V_ models and more than

models. As will be showr_ these energies1048 ergs stored for V7 I

are, for the most part, suffioiently large to aooount for the

present day photon luminosity of the Crab Nebula.

2. Thermal Damping

Let _H(Tg) be the neutrino luminosity for no vibration

(_o " 0). Th? rate of deorease of thermal energy is then,

dSTH(t)
dt "" _LTH(T9) " L7 "



1051
I I i I i I I

w

m
m

u.J

1050

i049

i0 47 i I I I I I %1

5 6 7' 8 9 I0 II

Iog_otime in sec
FLsure _-_-



is much less than _H' then it can be shown that

ETH(t) ='.TH(O) E1 + b_(O)t] "1/3_

,,(t) = %(o) [i +

and

sT_(t)
 H(t) - b 3 ' ,rgs/seo.

ETH (t) and EVIB(t) have the same dependence on luminosity.

A sample cooling ourTe is shown in Figure 1 for V (1.07)
7

with an initial temperature of T9 - 1. Also shown are vibrational

energy histories for the'same model with two different initial

v_lues of _o" The shape of the curves are typical of all models

and show that regardleqs of the initial conditions the curves

(for EVI B or ETH) merge together after a suitable time has elapsed.
-52_

This is in agreement with the functional forms of (q_ and

(_)-

The behavior of Te with time for V (1.07) is illustrated

relation between T and Tg.in Figure _ Also shown e

- _I_ _3 m:,.-_!_= _..... _ At 3 x i0 I0 see. the effective

surface temperaeure of V 7 (1.O7) is _ 4 x 106 OK. The maximum

blackbody wavelength corresponding to this t?mperature is

oXmax(C,m.)- o.291e/me(°x)., . _ lO"7 0m.l - lOA _ 6_

which is in the soft x-ray region.

A compilation of the survey results is given in Table

where the quantities a, b and g are listed for all models. Also
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listed are the elapsed times v for which the forms for Te(t )
/

and ETH(t ) of (II-37) and (11-38) become invalid. At times

longer than T the photospheri, photon luminosity L7 exceeds _H

0

regardless of initial T9. T,e is the photospheric temperature at

_@

Table ll-4

8ur. ve_ Re,suits

Model

vT(l,8)

vT(l.o )

v7(o.325)

Vp!0.887 ), 2.3xlo, 154

Vp(O.621) 1.2xlo" 153

vp(0.34) 4 x 1o7153

a b- g. :°(°K)
_rgs_3seo_l) (ergs_3seo.!)@eg_geeo,_ •

Ot92xlO'155 i 1,66x10_ 153 1.1xlO -8

1.2z!0 "158

4.5x10 "157

,(see)

6x106 5x1010

1.55xlO "153 1.8xi0"8 2.5xi06 4xlO 11

6.5 xlO "153 3.5x10 -8 IxlO 6 4x1012

4.IxlO -151 1.3xlO "8 5x106 5xlO I0

2 z 10 "151 l.gzlO "8 4x106 5xlO 11

2 x 10_ 152 2.6x10 "8 1.7x106 8x1011

3. Vibrational and Thermal CouPling

In the lmore realistic case in which the neutron star is

vibrating but has a non-zero initial temperature the analysis is

more difficult. There appears to be no known way to decide,how

the combined thermal and oscillating URCA losses are divided

between d_mptng of the thermal and vibrational energies. An

extreme view is _to assume that half of the energy loss L(_o.Tg)

reduces EVI B and the other half ETH , but for reasonable values of

_o and T 9 L(_0,T9-O ) >> L(_o-O,Tg) so this penalises ETH and

cause s ,BVI B to decrease more slowl_ than expected. We shall then
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take.a more oons,ervatlve view wlth re6_rd to EVT B and assume

that L(_0;T9) oan be broken up into the emn of two terms,

with

d_iS---- C_)dt " " LI
• O

and

dETH

dt L,(Tg) - L7 •

Among the possible oholoes for Lt(_ O) and L'(T9) are

L'(_o) - L(_o,T9) - L(_b-O,T9) -___)

and

L'(T9) - L(_o-O,T9)

or,

L'(_ 9) - ;,(_oJg) - L(_oJglO) "

and,

Equations _ and _ were solved for eaoh of the above

schemes. ETH and _IB ohan_ed by no more than 209o after elapsed

times of _ lOO0 years from the •values that the. pure thermal or

vlbrating oases g_Ve.

Another sohe.me, eugges, ted by Thorne (prtv&te oom_unioation)

Is to take aooount of the followinss for eTer_ URCA reaotion not



D all of the energy is given to the neutrino but some fraction of
i

the total reaction energy is deposited as thermal motion Of the

final particles. Thus, there is a feedback effect in which some

of the vibrational energy is converted into heat. If in analogy

to beta decay we assume that roughly half of L(_o,T9 ) is so

converted, then in the same not@rich as sections 1 and 2 we have

CLEVIS
"" _IB

and,

dETH "

/

" ½( IB - - •

For _IB initially greater than LTH the thermal energy

increases with time until the temperature reaches the point

where LTH _ _IB" Thereafte_,Ithe temperature decreases at suc_

a rate tha_ this equality is m_intained. In terms of.T e the

effect is to maintain the surface luminosity at higher values

than without coupling between vibration and temperature, There

is no difference in EVI B.

The effect on Te is shown in Figure_for V 7 (1.07) wlth

_o(O ) l Oil and T_(O) l l. We seelthat fQr times greater than
I

i00 years Te.iS enhanced by about 30_0 compared with no feed-

back values. This corresponds to an enhancement of the black-

body luminosity of only a faotor of two. In order to attain

even this enhancement a very large initial amplitude is required.
f
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This discussion is prompted by some calculations of

Zee and Wheeler concerning energy loss by gravitational

radiation from the quadrupole oscillations of a neutron

star. Zee and Wheelerlestimate a half-life for radiation

of the quadrupole vibrational energy of the order of sec-

onds. Meltzer and Thornelhave further suggested that if

the neutron star is rotating, the rotational flattening

will provide a coupling between the purely radial oscilla-

tions of the star and the quadrupole oscillations, in which

the radial vibrational energy will be drained away through

the quadrupole mode with a half-life of about a day even

with very moderate rotational flattening. Since energy
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storage in radial vibrations has been suggested as a reser-

voir giving rise to x-rays from the circumstellar regions

of neutron stars by synchrotron and bremsstrahlung mechan-
2

isms , i£ is of interest to examine the degree to which

rotational flattening may be expected to persist after

formation of a neutron star in a supernova implosion.

Recent hydrodynamical calculations on the supernova

collapse problem by W. D. Arnett (ref. 3 and personal com-

munication) show that the collapse of a star of several

solar masses will leave a remnant in the range 0.5 - 2

solar masses, the uncertainty partially representing differ-

ences in starting conditions and partially representing the

approximations which have so far been made in handling the

equation of state during the collapse. We have recently

shown that the maximum stable mass of a neutron star probably

4,5
lies in the range 1 - 2 solar masses. It may readily be

shown that if a star _ I0 solar masses is rotating on the

verge of rotational instability at the equator while on the

main sequence (as is usually observed to be the case), and

if it continues to rotate rigidly (owing to magnetic and

turbulent viscosity) after evolving to the red giant phase,

then the central one solar mass will rotate at much less

than the verge of rotational instability after being suddenly
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compressed to neutron star dimensions with local conservation

of angular momentum. This consideration is strengthened if

one includes the effects of angular momentum loss accompany-

ing mass loss in the red giant phase, but it is weakened to

the extent that turbulence and magnetic fields may not be

able to maintain rigid rotation of the core with the envelope

in the red giant phase. For complete generality we discuss

the case of a fast-rotating neutron star remnant.

Hoyle, Narlikar, and Wheeler 6 have suggested that the

remnant of a supernova explosion will be a rapidly-rotating

flattened disk. If the disk is very thin, the implication

is that the hydrodynamic time scale of the collapse will be

lengthened and the gravitational potential energy release

will be less localized. Hence energy transfer by neutrino

diffusion will be very inefficient and Arnett's calculations

would then suggest that a strong shock wave is not formed

to eject the outer envelope. Thus the disk will be very

massive, and if there is outward transport of angular

momentum and inward transport of mass as a result of tur-

bulence, the central part of the disk is likely to collapse

through its Schwarzschild radius, thus precluding the

possibility of long-term storage of energy.
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It must also be enquired as to whether a very flat disk

may not be unstable to deformation into a Jacobi ellipsoid

with three unequal axes, thus forming a mass quadrupole. A

related question has been investigated by Roberts_ who found

that a rapidly spinning polytrope will deform into a Jacobi

ellipsoid if the polytropic index is less than about unity.

We have assigned rough effective polytropic indices to our

models of neutron stars 5 by comparing the ratio of central

to mean densities for our models with those for polytropes.

The results are shown in Figure i.

The two model sequences shown in Figure 1 represent two

different expressions for the nuclear interaction potential

which enters the equation of state used in the construction

of the models. The correct model sequence may well lie

between these two. It may be seen that the effective poly-

tropic index of the models in the vicinity of one solar mass

is indeed near or below unity. Hence there is a good chance

that neutron stars can deform into Jacobi ellipsoids if they

are spinning rapidly enough. The resulting mass quadrupole

can emit gravitational radiation, and this will slow the

spin rate until the ellipsoid relaxes to a spheroid. Chin

has shown that the characteristic time for this is of the

8
order of a second.



We now consider the slowing of the spin of a neutron

star due to loss of angular momentum when an external mag-

netic field exerts a torque on mass which is flowing away

in the form of a stellar wind. The stellar wind is likely

to arise from the heating of a corona around the neutron

star by shock waves and hydr_aves generated by

29
the radial vibrations; ' its expansion will be assisted by

radiation pressure due to the high surface temperature at

the photosphere. The outflowing plasma will tend to pull

the magnetic field radially away from the star, and the

rotation will tend to wrap the field lines into a spiral.

The following calculation of angular momentum loss is similar

in principle to one previously carried out by Schatzman I0

in connection with the sun.

We may expect that close to the neutron star the mag-

netic field causes the corona to corotate with the star,

but at large distances the corona rotates slower and the

field is wrapped into a tight spiral• The condition of

corotation may be expected to break down at roughly that

distance r such that the radius of curvature of the field

lines is also r. The Coriolis pressure gradient on the gas

2pv® will be approximately equal to the magnetic tension:

2pv_ = B2/4nr, (i)
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where p is the gas density, v is the expansion velocity, w

is the angular velocity of the neutron star, and B is the

magnetic field. We take the mass flow f through any spherical

surface concentric with the star to be constant:

2
f = 4_pr v = constant

If we designate physical quantities at the neutron star

surface by subscripts zero, then

Qo Vo

For the radial magnetic field

Bo

Hence from equation (i) we obtain

2 2
3 Bo r0

r - 8_ Po vow

Let the angular momentum of the neutron star be

2
L= KMr o w

where M is the stellar mass.

The rate of loss of angular momentum is

d__L = _ fr21tl = KMro 2 d___w

dt dt

The soluti6n to this equation is



2/3
W.

i
- W 2/3 = bt,

where t is the time required for the angular velocity to be

reduced from an initial value w. to a smaller value w, and
1

b 23 fl/3KM _B_ _2/3

Hence the time required to remove the initial angular momen-

tum is

2/3
3KM_.

t = 1 (2)

21/3fl/3Bo4/3ro2/3

Let us estimate some reasonable values of the quantities

in connection with equation (2). We take as rough values for

a neutron star M = 2 x 1033 gm., ro = 106 cm., and K = 0.2.

3 1/2
The Kepler orbital velocity at the surface is (GM/ro ) =

1.15 x 104 so we take w. = 104 radians/sec. The initial
l 1

1 2 2 1052
rotational energy is _ KMro • = 2 x ergs. This must

be dissipated during the slowing of the spin; let us suppose

this energy goes into mass loss in order to get a crude

estimate of f. The resulting mass ejection is roughly

Kro 3W2/2G _ 1032 grams. Hence f _ i032/t, and equation (2)

becomes

t _ 3 x 1031/Bo 2 (3)

ii
Now Woltjer has estimated that a neutron star is
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likely to be formed with a magnetic field Bo of the order of

1014 to 1016 gauss. If this is correct, then from equation

(3) we find that the spin of a neutron star is likely to be

eliminated on a time scale of seconds.

Thus we conclude that there is no assurance that rota-

tional flattening of a neutron star will be responsible for

eliminating radial vibrational energy by providing a coupl-

ing to the quadrupole oscillation mode. Furthermore, it

appears that rotational energy storage in a neutron star is

most unlikely to provide a reservoir which can lead to

energetic radiation processes for very long after the star

is formed. More careful detailed considerations of all of

these processes are needed.
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Figure I.

Fiqure Caption

Plot of the ratio of the central to the mean

proper energy density for the Tsuruta-Cameron

neutron star model sequences characterized by

the Levinger-Simmons potentials V 8 and Vy.

Also given are the ratios of central to mean

densities for various polytropic indices n.

The shaded region below n = 1 will be unstable

to deformation into Jacobi ellipsoids.
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Cosmic Ray Production by Vibrating Neutron
Stars

I HAVE recently pointed out x that a vibrating neutron
star, which is expected to be formed as a remnant of the

explosion of a Type I supernova, may store up to 105x or

1053 orgs as mechanical energy of vibration. This energy
may be dissipated by various non-thermal mechanisms.

If a magnetic field is embedded in the neutron star, then

the vibrations will produce hydromagnotie waves which

travel along the field lines, and those will be capable of

accelerating charged particles to high energies by transit s

and stochastic 8 acceleration processes. There is a possi-
bility that the synchrotron radiation of X-rays from the

Crab Nebula results from acceleration processes of this
type, where the accelerated electrons have been able to

diffuse into the outer expanding envelope. Such a diffusion
is rendered easier if there should be a corona produced

around the neutron star, which expands to form a stellar

wind, thus drawing radially outward the magnetic lines
of force. Such coronal heating may arise from shocks

produced by the vibrations in the atmosphere z or by

electromagnetic interaction between the magnetic field
and the surrounding plasma (Manloy, .O., private com-
munication).

If electrons can be accelerated to high energies in this
way, then it should also be possible to accelerate ions in

the vibrating magnetic field. This leads naturally to the

hypothesis that vibrating neutron stars may be some of

the principal injectors of high energy cosmic rays into the
galaxy. Some aspects of this hypothesis are discussed in
this communication.

The ions which would be accelerated to cosmic ray

energies by vibrating neutron stars should certainly
include those ions composing the corona. The corona

should have the same composition as the photosphere of

the neutron star, and if the corona is hot enough to

expand in the form of a stellar wind, then the composition
of the photosphere may change with time. Hence one

test of this cosmic ray acceleration process is that the
composition of the heavy cosmic ray primaries should be

consistent with the changing abundances in the neutron
star photosphere.

The abundances of cosmic ray primaries with Z > 2
are shown in Fig. 1. The abundances are based on

measurements by Waddington4, 5 and by the Naval
Research Laboratory group% Also shown in Fig. 1 are
the relative abundances of the elements with Z, > 2 in



the Sun and solar system: These abundances are based
partly on solar spectroscopy_, partly on meteorite
analysis 7, and partly on rocket measurements of solar

cosmic rays 8. Both distributions are normalized to

oxygen, and the abundances have been plotted as a

function of mass number by spreading the abundances

for each charge number over the principal isotopes of

that element. Since the cosmic ray abundances have been
strongly affected by spallation processes, this treatment
produces a reasonably smooth abundance plot. The

solar system abundances have been treated in the same

way in order to facilitate comparison.
The differences between these two curves are striking.

It appears that the cosmic ray abundance data cannot be
obtained by accelerating particles with the relative
abundances corresponding to solar composition, with

modification by spallation, since there is a relative

deficiency of cosmic ray nuclei in the vicinity of silicon
and sulphur. On the other hand, it appears possible to

account for the cosmic ray distribution if the products of
three processes of nucleosynthesis form the material

which is accelerated. These processes are:
(1) Helium-burning. ttelium-burning thermonuclear

reactions produce as products carbon-12 and oxygen-16.

The relative abundances to be expected for these two

products are unknown since these depend on the reduced
_-paxtiele width of the 7-12 MeV level of oxygen-16,

which has not yet been measured.

(2) Carbon-burning; The products of the nuclear
reactions of carbon-12 with itself are primarily neon-20,

sodium-23 and magnesium-24. The relative abundances
of these products which I found for a relatively slow

process of carbon-burning* are shown near the bottom of

Fig. 1. A significant abundance tail at higher mass
numbers would b_ added if the carbon-burning occurred

at somewhat higher temperatures, such as those in the
supernova shock wave which traversed the outer layers

of the supernova and ejected them into space.
(3) The iron equilibrium peak. When matter is heated

to the vicinity of 3 x 10" °K or higher, the nuclei will
rearrange ttmmselves into the vicinity of the iron peak,

where the binding energy per nucleon is a maximum.
There is a distinct iron peak in the solar abundance data

which shows the results of this process.
The heavy cosmic ray primaries appear to be composed

principally of products of these three processes of nucleo-
synthesis, with subsequent modification by _ spallation. It

appears that the nuclei have traversed about 3 or 4 g/cm"

of material, presumably mostly hydrogen; but it is not
clear how much of this matter was in the source and how

much in the interstellar medium.

The evolution in the immediate presupernova stage of

a star of not very great mass has been investigated by
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Fig. 1. Abundances in cosmic rays and in the solar system of elements
with Z > 2. The heavier cosmic ray data are sparse, and some charges are
missing. These gaps are bridged by dashed segments connecting the
section_ of the solid line. Shown near the bottom is the pattern of

abundances formed in the carbon-burning process

Chiu 10,11. Following the process of helium-burning in the

core, such stars become highly degenerate at their centres,

and the emission of neutrino pairs prevents the tom-
poraturo from rising rapidly until the mass of the core is
near the Chandrasokhar limit, so that contraction becomes

very rapid. Then carbon or oxygen burning will com-

mence, but this will load to an oven stronger density

concentration towards the centre. The supernova collapse
is triggered when the high Fermi level of the electrons at
the centre starts converting nuclei into neutrons.

Colgate and White z_ have shown that, during the
collapse, a degenerate neutron core will be formed at the

centre of the configuration. The material • continuing to

rain down on this core will produce very high temperatures
and cause the formatioa of a shock wave. The shock



wave will then traverse the outer layers, heating and

ejecting them. Not all the material Will be ejected to

infinity; some of it will fall back and it is this material

which we suspect will sot up radial oscillations in the
neutron star remnant.

• I_ the interior of the neutron star ordinary nuclei will

not exist. Near the surface, temperatures of 3 x 10 ° °K
or higher will persist for times of 10 6 sec or longer. Under

these conditions the material will be processed into the

vicinity of the iron peak is. Nearer the surface the tem-
perature Will be insufficient for this to occur. Chin and
Salpeter x' have shown that hydrogen and helium on the

surface will be destroyed by inward diffusion, and that
carbon will be destroyed to a considerable extent, but

still heavier ions to a negligible extent.

Hence we see that even if the layer initially com.
posing the neutron star surface contains only light

elements, the final layer is likely to contain carbon,
oxygen, carbon-burning products, and the iron peak.

The high density at which helium-burning would occur
in the surface will favour the formation of carbon

relative to oxygen, as is observed in the cosmic rays.

Because the temperature will fall rapidly in the envelope
beyond the thermal conduction central plateau, the inter-

mediate stage consisting of silicon and sulphur Will have

only small abundances, and this region will not be built

up by nuclear reactions accompanying diffusion.
Thus we see that if the outer layers of the neutron star

are peeled off by a stellar wind, the corona is likely to be

initially composed of carbon and oxygen, later of the

products of carbon-burning, and eventually of iron peak
nuclei. Hence the neutron star cosmic ray acceleration

hypothesis seems not incdnsistent With our knowledge of

the structure of a neutron star and of the processes of
nucleosynthesis.

The bulk of the cosmic rays consists, not of nuclei with

Z > 2, but of protons and a.particles. It is evident that
under the conditions described here these could not be

accelerated in the immediate vicinity of a nedtron star.

However, in the present picture in which the neutron

s_ar has a stellar wind which draws the magnetic field
out in the radial direction, hydromagnetic waves may be

able to progress fron_the vicinity of the neutron star out
into the expanding ejected envelope. Such a model would

seem appropriate for the Crab Nebula, and the hydro-

magnetic waves would t_hen have an opporbuuity to
accelerate protons and a-particles in th0 envelope. But

protons and _-par_icles would also be the principal
products accelerat_l in the supernova hydrodynamic

hypothesis of Colgate and Johnson aS.
For many years supernova remnants have seemed

likely sources for the acceleration of cosmic rays. Argu-
ments toward this end have been based on the obvious



availability Of large amounts of energy and of the presence

of energetic particles as revealed by synchrotron omission.

However, specific models for the acceleration process have

been lacking. It is hoped that the present model will
serve as a basis for further quantitative investigations.

A.. G. W. CAMERON

Institute for Space Studies,
Goddard Space Flight Center,

National Aeronautics and Space Administration,
New York.

1 Cameron, A. G. W., Nature, 205, 787 (1965).
s Shen, C. S., Astro_hys. J., 141, 1091 (1965).
s Sturrock, P. A. (in preparation).

• Waddington, C. _., iD Proofers in _uclear Physics, 8, 3 (Pergamon Press,
Oxford, 1960).

5 Waddington, C. J., Proe. Intern. Conf. Cosmic Rays and the Earth Storm,
J. Phys. Soc. (Japan), 17, _upp. A III, 63 (1962).i

r • O'Dell, F. W., Shapiro, M. M., and Stiller, B., Proc. Intern. Conf. Cosmic
Rays and the Earth Storm, J. Phys. Soc. (Japan), 17, Supp. A III, 23
(1962).

7 Cameron, A. G. W., "Nuclear Astrophysics", notes of lectures at Yale
University (1963).

• Gaustad, J. E., Astro_hys. J.,139, 406 (1964).
' Cameron, A. G. W., Astrophys. J.,130, 429'(1959).

lo Chiu, H. Y., in Stellar Evolution, edit. by Stein, R. F., and Cameron,
A. G. W. (Plenum Press, in the press, 1965).

n Chiu, H. Y., in the proceedingB of the Conference on Nuclcosynthesis (to
be published).

12 Colgate, S. A., and White, R. H. (in preparation).

la Gilbert, A., Truxan, J. W., and Cameron, A. G. W. (in preparation).

la Chiu, H. Y., and Salpeter, E. E., Phys. Rev. Letters, 12, 412 (1964).

1_ Colgate, S. A., and Johnson, M. H., Phys. Rev. Le2ters, 5, 235 (1960).


